Convergence/Divergence of $int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$












1












$begingroup$


Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$

Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$

Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
$|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$

As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$

    Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$

    Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
    $|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$

    As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$

      Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$

      Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
      $|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$

      As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?










      share|cite|improve this question









      $endgroup$




      Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$

      Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$

      Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
      $|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$

      As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?







      calculus improper-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 13 at 14:25









      Turan NəsibliTuran Nəsibli

      726




      726






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
          $$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
          and the integral of the right-hand side is convergent:
          $$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
          What may we conclude?






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            By a numerical method we get $$approx 1.676060785605060001$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Jan 13 at 14:35










          • $begingroup$
            Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:41










          • $begingroup$
            Yes, you are correct!
            $endgroup$
            – Robert Z
            Jan 13 at 14:42










          • $begingroup$
            Thank you both for the help!
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:44











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072046%2fconvergence-divergence-of-int-0-infty-frac-sin-xx-ln2-x22-ma%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
          $$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
          and the integral of the right-hand side is convergent:
          $$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
          What may we conclude?






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            By a numerical method we get $$approx 1.676060785605060001$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Jan 13 at 14:35










          • $begingroup$
            Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:41










          • $begingroup$
            Yes, you are correct!
            $endgroup$
            – Robert Z
            Jan 13 at 14:42










          • $begingroup$
            Thank you both for the help!
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:44
















          1












          $begingroup$

          Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
          $$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
          and the integral of the right-hand side is convergent:
          $$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
          What may we conclude?






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            By a numerical method we get $$approx 1.676060785605060001$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Jan 13 at 14:35










          • $begingroup$
            Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:41










          • $begingroup$
            Yes, you are correct!
            $endgroup$
            – Robert Z
            Jan 13 at 14:42










          • $begingroup$
            Thank you both for the help!
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:44














          1












          1








          1





          $begingroup$

          Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
          $$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
          and the integral of the right-hand side is convergent:
          $$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
          What may we conclude?






          share|cite|improve this answer











          $endgroup$



          Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
          $$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
          and the integral of the right-hand side is convergent:
          $$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
          What may we conclude?







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 13 at 14:50

























          answered Jan 13 at 14:34









          Robert ZRobert Z

          95.9k1065136




          95.9k1065136








          • 1




            $begingroup$
            By a numerical method we get $$approx 1.676060785605060001$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Jan 13 at 14:35










          • $begingroup$
            Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:41










          • $begingroup$
            Yes, you are correct!
            $endgroup$
            – Robert Z
            Jan 13 at 14:42










          • $begingroup$
            Thank you both for the help!
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:44














          • 1




            $begingroup$
            By a numerical method we get $$approx 1.676060785605060001$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Jan 13 at 14:35










          • $begingroup$
            Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:41










          • $begingroup$
            Yes, you are correct!
            $endgroup$
            – Robert Z
            Jan 13 at 14:42










          • $begingroup$
            Thank you both for the help!
            $endgroup$
            – Turan Nəsibli
            Jan 13 at 14:44








          1




          1




          $begingroup$
          By a numerical method we get $$approx 1.676060785605060001$$
          $endgroup$
          – Dr. Sonnhard Graubner
          Jan 13 at 14:35




          $begingroup$
          By a numerical method we get $$approx 1.676060785605060001$$
          $endgroup$
          – Dr. Sonnhard Graubner
          Jan 13 at 14:35












          $begingroup$
          Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
          $endgroup$
          – Turan Nəsibli
          Jan 13 at 14:41




          $begingroup$
          Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
          $endgroup$
          – Turan Nəsibli
          Jan 13 at 14:41












          $begingroup$
          Yes, you are correct!
          $endgroup$
          – Robert Z
          Jan 13 at 14:42




          $begingroup$
          Yes, you are correct!
          $endgroup$
          – Robert Z
          Jan 13 at 14:42












          $begingroup$
          Thank you both for the help!
          $endgroup$
          – Turan Nəsibli
          Jan 13 at 14:44




          $begingroup$
          Thank you both for the help!
          $endgroup$
          – Turan Nəsibli
          Jan 13 at 14:44


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072046%2fconvergence-divergence-of-int-0-infty-frac-sin-xx-ln2-x22-ma%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?