Convergence/Divergence of $int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$
$begingroup$
Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$
Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$
Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
$|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$
As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?
calculus improper-integrals
$endgroup$
add a comment |
$begingroup$
Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$
Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$
Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
$|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$
As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?
calculus improper-integrals
$endgroup$
add a comment |
$begingroup$
Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$
Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$
Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
$|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$
As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?
calculus improper-integrals
$endgroup$
Let's call $f(x)= frac {sin x}{xln^2(x^2+2)}$ and split our integral: $$int_0^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x={int_0^2 {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x}+int_2^{+infty} {frac {sin x}{xln^2 (x^2+2)}} mathrm{d}x$$
Then I should consider behavior of $f(x)$ as $x$ approaches $0$ and $+infty$
Now let's call $I=int_2^{+infty}frac{1}{xln^beta(x)}$ and if we consider behavior of $f(x)$ at $+infty$
$|f(x)|=frac{|sin x|}{xln^2(x^2+2)}leqfrac{1}{xln^2(x^2+2)}$ and second integral converges because $I$ converges when $betagt1$
As for $x$ approaching $0$,$f(x)$ behaves like $frac{1}{ln^2(x^2+2)}$.So,my question is how can we study convergence/divergence of this one?
calculus improper-integrals
calculus improper-integrals
asked Jan 13 at 14:25
Turan NəsibliTuran Nəsibli
726
726
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
$$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
and the integral of the right-hand side is convergent:
$$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
What may we conclude?
$endgroup$
1
$begingroup$
By a numerical method we get $$approx 1.676060785605060001$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 13 at 14:35
$begingroup$
Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
$endgroup$
– Turan Nəsibli
Jan 13 at 14:41
$begingroup$
Yes, you are correct!
$endgroup$
– Robert Z
Jan 13 at 14:42
$begingroup$
Thank you both for the help!
$endgroup$
– Turan Nəsibli
Jan 13 at 14:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072046%2fconvergence-divergence-of-int-0-infty-frac-sin-xx-ln2-x22-ma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
$$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
and the integral of the right-hand side is convergent:
$$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
What may we conclude?
$endgroup$
1
$begingroup$
By a numerical method we get $$approx 1.676060785605060001$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 13 at 14:35
$begingroup$
Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
$endgroup$
– Turan Nəsibli
Jan 13 at 14:41
$begingroup$
Yes, you are correct!
$endgroup$
– Robert Z
Jan 13 at 14:42
$begingroup$
Thank you both for the help!
$endgroup$
– Turan Nəsibli
Jan 13 at 14:44
add a comment |
$begingroup$
Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
$$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
and the integral of the right-hand side is convergent:
$$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
What may we conclude?
$endgroup$
1
$begingroup$
By a numerical method we get $$approx 1.676060785605060001$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 13 at 14:35
$begingroup$
Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
$endgroup$
– Turan Nəsibli
Jan 13 at 14:41
$begingroup$
Yes, you are correct!
$endgroup$
– Robert Z
Jan 13 at 14:42
$begingroup$
Thank you both for the help!
$endgroup$
– Turan Nəsibli
Jan 13 at 14:44
add a comment |
$begingroup$
Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
$$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
and the integral of the right-hand side is convergent:
$$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
What may we conclude?
$endgroup$
Hint. Note that $f(x)=frac{sin(x)}{xln^2(x^2+2)}$ is continuous in $(0,2]$ and its limit at $0^+$ is $1/ln^2(2)$. So it can be extended to a continuous function in $[0,2]$. Moreover, as you already remarked, for $xin [2,+infty)$,
$$|f(x)|=frac{|sin(x)|}{xln^2(x^2+2)}leq frac{1}{4xln^2(x)}$$
and the integral of the right-hand side is convergent:
$$int_2^{+infty}frac{1}{4xln^2(x)},dx=left[-frac{1}{4ln(x)}right]_2^{+infty}=frac{1}{4ln(2)}.$$
What may we conclude?
edited Jan 13 at 14:50
answered Jan 13 at 14:34
Robert ZRobert Z
95.9k1065136
95.9k1065136
1
$begingroup$
By a numerical method we get $$approx 1.676060785605060001$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 13 at 14:35
$begingroup$
Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
$endgroup$
– Turan Nəsibli
Jan 13 at 14:41
$begingroup$
Yes, you are correct!
$endgroup$
– Robert Z
Jan 13 at 14:42
$begingroup$
Thank you both for the help!
$endgroup$
– Turan Nəsibli
Jan 13 at 14:44
add a comment |
1
$begingroup$
By a numerical method we get $$approx 1.676060785605060001$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 13 at 14:35
$begingroup$
Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
$endgroup$
– Turan Nəsibli
Jan 13 at 14:41
$begingroup$
Yes, you are correct!
$endgroup$
– Robert Z
Jan 13 at 14:42
$begingroup$
Thank you both for the help!
$endgroup$
– Turan Nəsibli
Jan 13 at 14:44
1
1
$begingroup$
By a numerical method we get $$approx 1.676060785605060001$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 13 at 14:35
$begingroup$
By a numerical method we get $$approx 1.676060785605060001$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 13 at 14:35
$begingroup$
Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
$endgroup$
– Turan Nəsibli
Jan 13 at 14:41
$begingroup$
Well,yes $f(x)$ is bounded in the right neighbourhood of $0$ and because the interval we are considered is also bounded,we can concluse that the integral is convergent,is that right?
$endgroup$
– Turan Nəsibli
Jan 13 at 14:41
$begingroup$
Yes, you are correct!
$endgroup$
– Robert Z
Jan 13 at 14:42
$begingroup$
Yes, you are correct!
$endgroup$
– Robert Z
Jan 13 at 14:42
$begingroup$
Thank you both for the help!
$endgroup$
– Turan Nəsibli
Jan 13 at 14:44
$begingroup$
Thank you both for the help!
$endgroup$
– Turan Nəsibli
Jan 13 at 14:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072046%2fconvergence-divergence-of-int-0-infty-frac-sin-xx-ln2-x22-ma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown