Determine the convergence or divergence of $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right) $.












1












$begingroup$


Problem



Determine the convergence or divergence of $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right). $



Solution



Notice that
$$n^{frac{1}{n^2+2n+1}}-1leq n^{frac{1}{n^2}}-1=expleft(frac{ln n}{n^2}right)-1sim frac{ln n}{n^2}.$$
Since $sumlimits_{n =1}^{infty}n^{-{frac{3}{2}}}$ is convergent, and
$$dfrac{dfrac{ln n}{n^2}}{n^{-frac{3}{2}}}=frac{ln n}{sqrt{n}}to 0(n to infty),$$
by the comparison test, $sumlimits_{n =1}^{infty}dfrac{ln n}{n^2}$ converges. Further, so does $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right)$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is fine once you observe the terms of the series are nonnegative.
    $endgroup$
    – Wojowu
    Jan 13 at 14:48
















1












$begingroup$


Problem



Determine the convergence or divergence of $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right). $



Solution



Notice that
$$n^{frac{1}{n^2+2n+1}}-1leq n^{frac{1}{n^2}}-1=expleft(frac{ln n}{n^2}right)-1sim frac{ln n}{n^2}.$$
Since $sumlimits_{n =1}^{infty}n^{-{frac{3}{2}}}$ is convergent, and
$$dfrac{dfrac{ln n}{n^2}}{n^{-frac{3}{2}}}=frac{ln n}{sqrt{n}}to 0(n to infty),$$
by the comparison test, $sumlimits_{n =1}^{infty}dfrac{ln n}{n^2}$ converges. Further, so does $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right)$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is fine once you observe the terms of the series are nonnegative.
    $endgroup$
    – Wojowu
    Jan 13 at 14:48














1












1








1





$begingroup$


Problem



Determine the convergence or divergence of $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right). $



Solution



Notice that
$$n^{frac{1}{n^2+2n+1}}-1leq n^{frac{1}{n^2}}-1=expleft(frac{ln n}{n^2}right)-1sim frac{ln n}{n^2}.$$
Since $sumlimits_{n =1}^{infty}n^{-{frac{3}{2}}}$ is convergent, and
$$dfrac{dfrac{ln n}{n^2}}{n^{-frac{3}{2}}}=frac{ln n}{sqrt{n}}to 0(n to infty),$$
by the comparison test, $sumlimits_{n =1}^{infty}dfrac{ln n}{n^2}$ converges. Further, so does $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right)$.










share|cite|improve this question











$endgroup$




Problem



Determine the convergence or divergence of $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right). $



Solution



Notice that
$$n^{frac{1}{n^2+2n+1}}-1leq n^{frac{1}{n^2}}-1=expleft(frac{ln n}{n^2}right)-1sim frac{ln n}{n^2}.$$
Since $sumlimits_{n =1}^{infty}n^{-{frac{3}{2}}}$ is convergent, and
$$dfrac{dfrac{ln n}{n^2}}{n^{-frac{3}{2}}}=frac{ln n}{sqrt{n}}to 0(n to infty),$$
by the comparison test, $sumlimits_{n =1}^{infty}dfrac{ln n}{n^2}$ converges. Further, so does $sumlimits_{n =1}^{infty} left(n^{frac{1}{n^2+2n+1}}-1right)$.







proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 14:48







mengdie1982

















asked Jan 13 at 14:44









mengdie1982mengdie1982

4,912618




4,912618












  • $begingroup$
    This is fine once you observe the terms of the series are nonnegative.
    $endgroup$
    – Wojowu
    Jan 13 at 14:48


















  • $begingroup$
    This is fine once you observe the terms of the series are nonnegative.
    $endgroup$
    – Wojowu
    Jan 13 at 14:48
















$begingroup$
This is fine once you observe the terms of the series are nonnegative.
$endgroup$
– Wojowu
Jan 13 at 14:48




$begingroup$
This is fine once you observe the terms of the series are nonnegative.
$endgroup$
– Wojowu
Jan 13 at 14:48










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072059%2fdetermine-the-convergence-or-divergence-of-sum-limits-n-1-infty-leftn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072059%2fdetermine-the-convergence-or-divergence-of-sum-limits-n-1-infty-leftn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?