Dichotomous search algorithm in numeric optimization
If we assume that $phi$ is convex and continuous in $[a,b]$, it is obvius that, in this interval, $phi$ has a minimizer. The goal is know what point is it.
The main idea of Dichotomous search is reduce the size of the interval what is the minimizer evaluating $phi$ into two points, $overline{a}, overline{b} in (a,b) : overline{a} < overline{b} $.
For this, the algorithm uses the fact that if $phi(overline{a}) < phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[a,overline{b}]$. And $phi(overline{a}) geq phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[overline{a},b]$
Therefore, the Dichotomous algorithm computes the midpoint of the interval (step-by-step), $frac{a+b}{2}$ and, then moves slightly to either side of the midpoint to compute two test points: $frac{a+b}{2} pm varepsilon$, where $varepsilon$ is a very small number.
Why need to move slightly to either side of the midpoint?
optimization convex-optimization
add a comment |
If we assume that $phi$ is convex and continuous in $[a,b]$, it is obvius that, in this interval, $phi$ has a minimizer. The goal is know what point is it.
The main idea of Dichotomous search is reduce the size of the interval what is the minimizer evaluating $phi$ into two points, $overline{a}, overline{b} in (a,b) : overline{a} < overline{b} $.
For this, the algorithm uses the fact that if $phi(overline{a}) < phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[a,overline{b}]$. And $phi(overline{a}) geq phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[overline{a},b]$
Therefore, the Dichotomous algorithm computes the midpoint of the interval (step-by-step), $frac{a+b}{2}$ and, then moves slightly to either side of the midpoint to compute two test points: $frac{a+b}{2} pm varepsilon$, where $varepsilon$ is a very small number.
Why need to move slightly to either side of the midpoint?
optimization convex-optimization
It is not obvious at all that $phi$ has a minimizer; is $phi$ perhaps assumed to be continuous so we can apply the Weierstrass theorem?
– LinAlg
2 days ago
Correct. I must add continuity constraint.
– J. García
2 days ago
add a comment |
If we assume that $phi$ is convex and continuous in $[a,b]$, it is obvius that, in this interval, $phi$ has a minimizer. The goal is know what point is it.
The main idea of Dichotomous search is reduce the size of the interval what is the minimizer evaluating $phi$ into two points, $overline{a}, overline{b} in (a,b) : overline{a} < overline{b} $.
For this, the algorithm uses the fact that if $phi(overline{a}) < phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[a,overline{b}]$. And $phi(overline{a}) geq phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[overline{a},b]$
Therefore, the Dichotomous algorithm computes the midpoint of the interval (step-by-step), $frac{a+b}{2}$ and, then moves slightly to either side of the midpoint to compute two test points: $frac{a+b}{2} pm varepsilon$, where $varepsilon$ is a very small number.
Why need to move slightly to either side of the midpoint?
optimization convex-optimization
If we assume that $phi$ is convex and continuous in $[a,b]$, it is obvius that, in this interval, $phi$ has a minimizer. The goal is know what point is it.
The main idea of Dichotomous search is reduce the size of the interval what is the minimizer evaluating $phi$ into two points, $overline{a}, overline{b} in (a,b) : overline{a} < overline{b} $.
For this, the algorithm uses the fact that if $phi(overline{a}) < phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[a,overline{b}]$. And $phi(overline{a}) geq phi(overline{b})$, the minium of $phi$ in $[a,b]$ is contained in the interval $[overline{a},b]$
Therefore, the Dichotomous algorithm computes the midpoint of the interval (step-by-step), $frac{a+b}{2}$ and, then moves slightly to either side of the midpoint to compute two test points: $frac{a+b}{2} pm varepsilon$, where $varepsilon$ is a very small number.
Why need to move slightly to either side of the midpoint?
optimization convex-optimization
optimization convex-optimization
edited 2 days ago
J. García
asked 2 days ago
J. GarcíaJ. García
618
618
It is not obvious at all that $phi$ has a minimizer; is $phi$ perhaps assumed to be continuous so we can apply the Weierstrass theorem?
– LinAlg
2 days ago
Correct. I must add continuity constraint.
– J. García
2 days ago
add a comment |
It is not obvious at all that $phi$ has a minimizer; is $phi$ perhaps assumed to be continuous so we can apply the Weierstrass theorem?
– LinAlg
2 days ago
Correct. I must add continuity constraint.
– J. García
2 days ago
It is not obvious at all that $phi$ has a minimizer; is $phi$ perhaps assumed to be continuous so we can apply the Weierstrass theorem?
– LinAlg
2 days ago
It is not obvious at all that $phi$ has a minimizer; is $phi$ perhaps assumed to be continuous so we can apply the Weierstrass theorem?
– LinAlg
2 days ago
Correct. I must add continuity constraint.
– J. García
2 days ago
Correct. I must add continuity constraint.
– J. García
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
The reason is that you need to evaluate the function at two points, $bar{a}$ and $bar{b}$. The closer those $bar{b}$ is to $a$, and the closer $bar{a}$ is to $b$, the further you can shrink the interval, so you want $bar{a}$ and $bar{b}$ to be close to each other.
But, why I need to evaluate the function into $frac{a+b}{2} pm varepsilon$ and not in $frac{a+b}{2}$?
– J. García
2 days ago
@J.García you have to pick two distinct points. You can pick $(a+b)/2$ and $(a+b)/2+varepsilon$ if you like. Or $(a+b)/2-varepsilon$ and $(a+b)/2$. Your teacher or book selected $(a+b)/2-varepsilon$ and $(a+b)/2+varepsilon$, but you do not have to.
– LinAlg
2 days ago
But, why I must pick two disctinct points? If I evaluate only in one point, $f(point)$, why can't do dichotomous search?
– J. García
2 days ago
@J.García because your algorithm compares $f(bar{a})$ with $f(bar{b})$. The current algorithm needs two points because if you only know the function value at the midpoint you do not know in which subinterval to continue the search. You could use a different algorithm based on the derivative at the midpoint that only needs one derivative evaluation.
– LinAlg
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062926%2fdichotomous-search-algorithm-in-numeric-optimization%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The reason is that you need to evaluate the function at two points, $bar{a}$ and $bar{b}$. The closer those $bar{b}$ is to $a$, and the closer $bar{a}$ is to $b$, the further you can shrink the interval, so you want $bar{a}$ and $bar{b}$ to be close to each other.
But, why I need to evaluate the function into $frac{a+b}{2} pm varepsilon$ and not in $frac{a+b}{2}$?
– J. García
2 days ago
@J.García you have to pick two distinct points. You can pick $(a+b)/2$ and $(a+b)/2+varepsilon$ if you like. Or $(a+b)/2-varepsilon$ and $(a+b)/2$. Your teacher or book selected $(a+b)/2-varepsilon$ and $(a+b)/2+varepsilon$, but you do not have to.
– LinAlg
2 days ago
But, why I must pick two disctinct points? If I evaluate only in one point, $f(point)$, why can't do dichotomous search?
– J. García
2 days ago
@J.García because your algorithm compares $f(bar{a})$ with $f(bar{b})$. The current algorithm needs two points because if you only know the function value at the midpoint you do not know in which subinterval to continue the search. You could use a different algorithm based on the derivative at the midpoint that only needs one derivative evaluation.
– LinAlg
2 days ago
add a comment |
The reason is that you need to evaluate the function at two points, $bar{a}$ and $bar{b}$. The closer those $bar{b}$ is to $a$, and the closer $bar{a}$ is to $b$, the further you can shrink the interval, so you want $bar{a}$ and $bar{b}$ to be close to each other.
But, why I need to evaluate the function into $frac{a+b}{2} pm varepsilon$ and not in $frac{a+b}{2}$?
– J. García
2 days ago
@J.García you have to pick two distinct points. You can pick $(a+b)/2$ and $(a+b)/2+varepsilon$ if you like. Or $(a+b)/2-varepsilon$ and $(a+b)/2$. Your teacher or book selected $(a+b)/2-varepsilon$ and $(a+b)/2+varepsilon$, but you do not have to.
– LinAlg
2 days ago
But, why I must pick two disctinct points? If I evaluate only in one point, $f(point)$, why can't do dichotomous search?
– J. García
2 days ago
@J.García because your algorithm compares $f(bar{a})$ with $f(bar{b})$. The current algorithm needs two points because if you only know the function value at the midpoint you do not know in which subinterval to continue the search. You could use a different algorithm based on the derivative at the midpoint that only needs one derivative evaluation.
– LinAlg
2 days ago
add a comment |
The reason is that you need to evaluate the function at two points, $bar{a}$ and $bar{b}$. The closer those $bar{b}$ is to $a$, and the closer $bar{a}$ is to $b$, the further you can shrink the interval, so you want $bar{a}$ and $bar{b}$ to be close to each other.
The reason is that you need to evaluate the function at two points, $bar{a}$ and $bar{b}$. The closer those $bar{b}$ is to $a$, and the closer $bar{a}$ is to $b$, the further you can shrink the interval, so you want $bar{a}$ and $bar{b}$ to be close to each other.
answered 2 days ago
LinAlgLinAlg
8,7761521
8,7761521
But, why I need to evaluate the function into $frac{a+b}{2} pm varepsilon$ and not in $frac{a+b}{2}$?
– J. García
2 days ago
@J.García you have to pick two distinct points. You can pick $(a+b)/2$ and $(a+b)/2+varepsilon$ if you like. Or $(a+b)/2-varepsilon$ and $(a+b)/2$. Your teacher or book selected $(a+b)/2-varepsilon$ and $(a+b)/2+varepsilon$, but you do not have to.
– LinAlg
2 days ago
But, why I must pick two disctinct points? If I evaluate only in one point, $f(point)$, why can't do dichotomous search?
– J. García
2 days ago
@J.García because your algorithm compares $f(bar{a})$ with $f(bar{b})$. The current algorithm needs two points because if you only know the function value at the midpoint you do not know in which subinterval to continue the search. You could use a different algorithm based on the derivative at the midpoint that only needs one derivative evaluation.
– LinAlg
2 days ago
add a comment |
But, why I need to evaluate the function into $frac{a+b}{2} pm varepsilon$ and not in $frac{a+b}{2}$?
– J. García
2 days ago
@J.García you have to pick two distinct points. You can pick $(a+b)/2$ and $(a+b)/2+varepsilon$ if you like. Or $(a+b)/2-varepsilon$ and $(a+b)/2$. Your teacher or book selected $(a+b)/2-varepsilon$ and $(a+b)/2+varepsilon$, but you do not have to.
– LinAlg
2 days ago
But, why I must pick two disctinct points? If I evaluate only in one point, $f(point)$, why can't do dichotomous search?
– J. García
2 days ago
@J.García because your algorithm compares $f(bar{a})$ with $f(bar{b})$. The current algorithm needs two points because if you only know the function value at the midpoint you do not know in which subinterval to continue the search. You could use a different algorithm based on the derivative at the midpoint that only needs one derivative evaluation.
– LinAlg
2 days ago
But, why I need to evaluate the function into $frac{a+b}{2} pm varepsilon$ and not in $frac{a+b}{2}$?
– J. García
2 days ago
But, why I need to evaluate the function into $frac{a+b}{2} pm varepsilon$ and not in $frac{a+b}{2}$?
– J. García
2 days ago
@J.García you have to pick two distinct points. You can pick $(a+b)/2$ and $(a+b)/2+varepsilon$ if you like. Or $(a+b)/2-varepsilon$ and $(a+b)/2$. Your teacher or book selected $(a+b)/2-varepsilon$ and $(a+b)/2+varepsilon$, but you do not have to.
– LinAlg
2 days ago
@J.García you have to pick two distinct points. You can pick $(a+b)/2$ and $(a+b)/2+varepsilon$ if you like. Or $(a+b)/2-varepsilon$ and $(a+b)/2$. Your teacher or book selected $(a+b)/2-varepsilon$ and $(a+b)/2+varepsilon$, but you do not have to.
– LinAlg
2 days ago
But, why I must pick two disctinct points? If I evaluate only in one point, $f(point)$, why can't do dichotomous search?
– J. García
2 days ago
But, why I must pick two disctinct points? If I evaluate only in one point, $f(point)$, why can't do dichotomous search?
– J. García
2 days ago
@J.García because your algorithm compares $f(bar{a})$ with $f(bar{b})$. The current algorithm needs two points because if you only know the function value at the midpoint you do not know in which subinterval to continue the search. You could use a different algorithm based on the derivative at the midpoint that only needs one derivative evaluation.
– LinAlg
2 days ago
@J.García because your algorithm compares $f(bar{a})$ with $f(bar{b})$. The current algorithm needs two points because if you only know the function value at the midpoint you do not know in which subinterval to continue the search. You could use a different algorithm based on the derivative at the midpoint that only needs one derivative evaluation.
– LinAlg
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062926%2fdichotomous-search-algorithm-in-numeric-optimization%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
It is not obvious at all that $phi$ has a minimizer; is $phi$ perhaps assumed to be continuous so we can apply the Weierstrass theorem?
– LinAlg
2 days ago
Correct. I must add continuity constraint.
– J. García
2 days ago