Counting,Proability and Binomial Coefficients
$begingroup$
If $$P_{2n+2}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}$$
and,
$$P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}$$
where $0<p<q<1$ and $q=1-p$
Prove that
$$P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^n-{2n choose {n+1}}p^{n+1}q^{n+1}$$
$mathbf {Inspiration:}$ A and B play a series of games where the probability of winning $mathit p$ for A is kept less than 0.5. However A gets to choose in advance the total no. of plays. To win the game one must score more than half the games . If the total no. of games is to be even, How many plays should A choose?
$mathbf {Here}$ $P_{2n}$ and $P_{2n+2}$ represents the probability of A winning the play in $2n$ and $2n+2$ games where $2n$ is considered the optimum number of games
probability sequences-and-series combinatorics probability-theory binomial-coefficients
$endgroup$
add a comment |
$begingroup$
If $$P_{2n+2}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}$$
and,
$$P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}$$
where $0<p<q<1$ and $q=1-p$
Prove that
$$P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^n-{2n choose {n+1}}p^{n+1}q^{n+1}$$
$mathbf {Inspiration:}$ A and B play a series of games where the probability of winning $mathit p$ for A is kept less than 0.5. However A gets to choose in advance the total no. of plays. To win the game one must score more than half the games . If the total no. of games is to be even, How many plays should A choose?
$mathbf {Here}$ $P_{2n}$ and $P_{2n+2}$ represents the probability of A winning the play in $2n$ and $2n+2$ games where $2n$ is considered the optimum number of games
probability sequences-and-series combinatorics probability-theory binomial-coefficients
$endgroup$
$begingroup$
This is perhaps true. It reduces to $binom{2 n}{n+1} left((p-1)^2-, _2F_1left(1,1-n;n+2;frac{p}{p-1}right)right)+(p-1) p binom{2 n}{n}=(p-1) p binom{2 (n+1)}{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)$. Though I do not know how to prove this.
$endgroup$
– ablmf
Jan 13 at 10:30
add a comment |
$begingroup$
If $$P_{2n+2}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}$$
and,
$$P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}$$
where $0<p<q<1$ and $q=1-p$
Prove that
$$P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^n-{2n choose {n+1}}p^{n+1}q^{n+1}$$
$mathbf {Inspiration:}$ A and B play a series of games where the probability of winning $mathit p$ for A is kept less than 0.5. However A gets to choose in advance the total no. of plays. To win the game one must score more than half the games . If the total no. of games is to be even, How many plays should A choose?
$mathbf {Here}$ $P_{2n}$ and $P_{2n+2}$ represents the probability of A winning the play in $2n$ and $2n+2$ games where $2n$ is considered the optimum number of games
probability sequences-and-series combinatorics probability-theory binomial-coefficients
$endgroup$
If $$P_{2n+2}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}$$
and,
$$P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}$$
where $0<p<q<1$ and $q=1-p$
Prove that
$$P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^n-{2n choose {n+1}}p^{n+1}q^{n+1}$$
$mathbf {Inspiration:}$ A and B play a series of games where the probability of winning $mathit p$ for A is kept less than 0.5. However A gets to choose in advance the total no. of plays. To win the game one must score more than half the games . If the total no. of games is to be even, How many plays should A choose?
$mathbf {Here}$ $P_{2n}$ and $P_{2n+2}$ represents the probability of A winning the play in $2n$ and $2n+2$ games where $2n$ is considered the optimum number of games
probability sequences-and-series combinatorics probability-theory binomial-coefficients
probability sequences-and-series combinatorics probability-theory binomial-coefficients
asked Jan 13 at 4:28
Arijit DeyArijit Dey
314
314
$begingroup$
This is perhaps true. It reduces to $binom{2 n}{n+1} left((p-1)^2-, _2F_1left(1,1-n;n+2;frac{p}{p-1}right)right)+(p-1) p binom{2 n}{n}=(p-1) p binom{2 (n+1)}{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)$. Though I do not know how to prove this.
$endgroup$
– ablmf
Jan 13 at 10:30
add a comment |
$begingroup$
This is perhaps true. It reduces to $binom{2 n}{n+1} left((p-1)^2-, _2F_1left(1,1-n;n+2;frac{p}{p-1}right)right)+(p-1) p binom{2 n}{n}=(p-1) p binom{2 (n+1)}{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)$. Though I do not know how to prove this.
$endgroup$
– ablmf
Jan 13 at 10:30
$begingroup$
This is perhaps true. It reduces to $binom{2 n}{n+1} left((p-1)^2-, _2F_1left(1,1-n;n+2;frac{p}{p-1}right)right)+(p-1) p binom{2 n}{n}=(p-1) p binom{2 (n+1)}{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)$. Though I do not know how to prove this.
$endgroup$
– ablmf
Jan 13 at 10:30
$begingroup$
This is perhaps true. It reduces to $binom{2 n}{n+1} left((p-1)^2-, _2F_1left(1,1-n;n+2;frac{p}{p-1}right)right)+(p-1) p binom{2 n}{n}=(p-1) p binom{2 (n+1)}{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)$. Though I do not know how to prove this.
$endgroup$
– ablmf
Jan 13 at 10:30
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
We consider $(p+q)^2P_{2n}$ instead of $P_{2n}$ (because then our identity will be homogeneous). Then, we will simply compare coefficents of monomials $p^kq^{2n+2-k}$ in both sides of identity.
Note that (from equality $p+q=1$)
$$
P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p+q)^2,
$$
which equals
$$
sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p^2+2pq+q^2)=sum_{k=n+1}^{2n}{2n choose k}p^{k+2}q^{2n-k}+sum_{k=n+1}^{2n}2{2n choose k}p^{k+1}q^{2n-k+1}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}=sum_{k=n+3}^{2n+2}{2n choose k-2}p^{k}q^{2n+2-k}+sum_{k=n+2}^{2n+1}2{2n choose k-1}p^{k}q^{2n+2-k}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}.
$$
Therefore, $P_{2n}$ equals
$$
sum_{k=n+2}^{2n+2}left({2n choose k}+2{2n choose k-1}+{2n choose k-2}right)p^kq^{2n+2-k}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
We also know that
$$
{2n choose k}+2{2n choose k-1}+{2n choose k-2}=left({2n choose k}+{2n choose k-1}right)+left({2n choose k-1}+{2n choose k-2}right)={2n+1 choose k}+{2n+1 choose k-1}={2n+2 choose k},
$$
so we obtain
$$
P_{2n}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}=P_{2n+2}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
Hence,
$$
P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1},
$$
as desired.
$endgroup$
add a comment |
$begingroup$
The equality reduces to
$$
binom{2 n}{n+1} p^{n+1} (1-p)^{n-1} , _2F_1left(1,1-n;n+2;frac{p}{p-1}right)+binom{2 n}{n} p^{n+2} (1-p)^n-binom{2 n}{n+1} p^{n+1} (1-p)^{n+1}=binom{2 (n+1)}{n+2} (1-p)^{-n+2 (n+1)-2} p^{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)
$$
Let $w=p/(1-p)$, then the above is
$$
binom{2 n}{n+1} left((w+1)^2 , _2F_1(1,1-n;n+2;-w)-1right)+w binom{2 n}{n}=w binom{2 (n+1)}{n+2} , _2F_1(1,-n;n+3;-w)
$$
We can then extract the coefficient for $w^m$ from both side for $m in {0,dots,n}$ to see that this equality holds.
$endgroup$
add a comment |
$begingroup$
Forget the requirement that $0<p<q<1$; it is unnecessary. So let $p$ and $q$
be any reals satisfying $p+q=1$.
Also, let me extend the stage a little bit:
Definition. Let $m$ and $n$ be integers such that $ngeq mgeq0$. Then, we
let
begin{equation}
Q_{n,m}=sum_{k=m}^{n}dbinom{n}{k}p^{k}q^{n-k}.
end{equation}
With this definition, your $P_{2n}$ is $Q_{2n,n+1}$, while your $P_{2n+2}$ is
$Q_{2n+2,n+2}$. Thus, your claim becomes:
Theorem 1. Let $n$ be a nonnegative integer. Then,
begin{equation}
Q_{2n+2,n+2}=Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}
p^{n+1}q^{n+1}.
end{equation}
I shall derive this from the following:
Lemma 2. Let $m$ and $n$ be integers such that $ngeq mgeq1$. Then,
begin{equation}
Q_{n,m}=Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{equation}
Proof of Lemma 2. From $ngeq mgeq1$, we obtain $n-1geq m-1geq0$. Now,
the definition of $Q_{n-1,m-1}$ yields
begin{equation}
Q_{n-1,m-1}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}underbrace{q^{n-1-k}
}_{=q^{n-k-1}}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}.
label{darij1.pf.l2.0}
tag{1}
end{equation}
But the definition of $Q_{n,m}$ yields
begin{align}
Q_{n,m} & =sum_{k=m}^{n}underbrace{dbinom{n}{k}}_{substack{=dbinom
{n-1}{k-1}+dbinom{n-1}{k}\text{(by the recurrence of the binomial
coefficients)}}}p^{k}q^{n-k}=sum_{k=m}^{n}left( dbinom{n-1}{k-1}
+dbinom{n-1}{k}right) p^{k}q^{n-k}nonumber\
& =sum_{k=m}^{n}dbinom{n-1}{k-1}p^{k}q^{n-k}+sum_{k=m}^{n}dbinom{n-1}
{k}p^{k}q^{n-k}nonumber\
& =sum_{k=m-1}^{n-1}underbrace{dbinom{n-1}{left( k+1right) -1}
}_{=dbinom{n-1}{k}}p^{k+1}underbrace{q^{n-left( k+1right) }}
_{=q^{n-k-1}}+sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}nonumber\
& qquadleft( text{here, we have substituted }k+1text{ for }ktext{ in
the first sum}right) nonumber\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum_{k=m}^{n}
dbinom{n-1}{k}p^{k}q^{n-k}.
label{darij1.pf.l2.1}
tag{2}
end{align}
But we have
begin{equation}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m}^{n}dbinom{n-1}{k}
p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }
end{equation}
and
begin{align*}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k} & =sum_{k=m-1}^{n-1}dbinom
{n-1}{k}p^{k}q^{n-k}+underbrace{dbinom{n-1}{n}}_{substack{=0\text{(since
}n-1geq0text{ and }n-1<ntext{)}}}p^{n}q^{n-n}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{align*}
Comparing these two equalities, we obtain
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left(
m-1right) }=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{equation}
Thus,
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }.
end{equation}
Hence, eqref{darij1.pf.l2.1} becomes
begin{align*}
Q_{n,m} & =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+underbrace{sum
_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum
_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}left( p^{k+1}q^{n-k-1}+p^{k}q^{n-k}right) }-dbinom{n-1}{m-1}
p^{m-1}underbrace{q^{n-left( m-1right) }}_{=q^{n-m+1}}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}left( underbrace{p^{k+1}}_{=pp^{k}
}q^{n-k-1}+p^{k}underbrace{q^{n-k}}_{=qq^{n-k-1}}right) -dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}underbrace{left( pp^{k}q^{n-k-1}
+p^{k}qq^{n-k-1}right) }_{substack{=left( p+qright) p^{k}
q^{n-k-1}=p^{k}q^{n-k-1}\text{(since }p+q=1text{)}}}-dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}}
_{substack{=Q_{n-1,m-1}\text{(by eqref{darij1.pf.l2.0})}}}-dbinom
{n-1}{m-1}p^{m-1}q^{n-m+1}\
& =Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{align*}
This proves Lemma 2. $blacksquare$
Proof of Theorem 1. We have $left( 1-q-pqright) -p^{2}=-left(
p+1right) underbrace{left( p+q-1right) }_{substack{=0\text{(since
}p+q=1text{)}}}=0$, thus $1-q-pq=p^{2}$.
Lemma 2 (applied to $2n+2$ and $n+2$ instead of $n$ and $m$) yields
begin{align}
Q_{2n+2,n+2} & =underbrace{Q_{2n+1,n+1}}_{substack{=Q_{2n,n}-dbinom{2n}
{n}p^{n}q^{left( 2n+1right) -left( n+1right) +1}\text{(by Lemma 2,
applied to }2n+1text{ and }n+1\text{instead of }ntext{ and }mtext{)}
}}-underbrace{dbinom{2n+1}{n+1}}_{substack{=dbinom{2n}{n}+dbinom{2n}
{n+1}\text{(by the recurrence of the binomial coefficients)}}}p^{n+1}
underbrace{q^{left( 2n+2right) -left( n+2right) +1}}_{=q^{n+1}
}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}underbrace{q^{left( 2n+1right) -left(
n+1right) +1}}_{=q^{n+1}}-underbrace{left( dbinom{2n}{n}+dbinom
{2n}{n+1}right) p^{n+1}q^{n+1}}_{=dbinom{2n}{n}p^{n+1}q^{n+1}+dbinom
{2n}{n+1}p^{n+1}q^{n+1}}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-left( dbinom{2n}{n}p^{n+1}
q^{n+1}+dbinom{2n}{n+1}p^{n+1}q^{n+1}right) nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
label{darij1.pf.t1.1}
tag{3}
end{align}
But the definition of $Q_{2n,n+1}$ yields $Q_{2n,n+1}=sum_{k=n+1}^{2n}
dbinom{2n}{k}p^{k}q^{2n-k}$. Meanwhile, the definition of $Q_{2n,n}$ yields
begin{align*}
Q_{2n,n} & =sum_{k=n}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}=underbrace{sum
_{k=n+1}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}}_{=Q_{2n,n+1}}+dbinom{2n}{n}
p^{n}underbrace{q^{2n-n}}_{=q^{n}}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}.
end{align*}
Thus,
eqref{darij1.pf.t1.1} becomes
begin{align*}
Q_{2n+2,n+2} & =underbrace{Q_{2n,n}}_{=Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}
}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}
{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom
{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( p^{n}q^{n}-p^{n}
q^{n+1}-p^{n+1}q^{n+1}right) }_{=left( 1-q-pqright) p^{n}q^{n}}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( 1-q-pqright) }_{=p^{2}}
p^{n}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{p^{2}p^{n}}_{=p^{n+2}}q^{n}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
end{align*}
This proves Theorem 1. $blacksquare$
$endgroup$
add a comment |
$begingroup$
We have for the first sum
$$S = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
and for the second one
$$T = sum_{k=0}^{n-1} {2nchoose k+n+1} p^{k+n+1} q^{n-1-k}$$
and seek to show
$$S-T =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}$$
where $p+q=1.$ We see that with
$$Q_n = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
the claim becomes
$$Q_n - Q_{n-1} =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}.$$
Now
$$Q_n = p^{n+2} q^n
sum_{k=0}^n {2n+2choose k+n+2} p^{k} q^{-k}
= p^{n+2} q^n
sum_{k=0}^n {2n+2choose n-k} p^{k} q^{-k}
\ = p^{n+2} q^n
sum_{k=0}^n p^{k} q^{-k}
[z^{n-k}] (1+z)^{2n+2}
= p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{k=0}^n p^{k} q^{-k} z^k.$$
We may extend $k$ beyond $n$ owing to the coefficient extrator $[z^n]$
in front:
$$p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{kge 0} p^{k} q^{-k} z^k
= p^{n+2} q^n [z^n] (1+z)^{2n+2} frac{1}{1-pz/q}
\ = p^2 [z^n] (1+pqz)^{2n+2} frac{1}{1-p^2z}.$$
We thus have
$$Q_{n-1} = p^2 [z^{n-1}] (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] z (1+pqz)^{2n} frac{1}{1-p^2z}.$$
Subtracting we find
$$Q_n - Q_{n-1}
= p^2 [z^n] ((1+pqz)^2-z) (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-p^2 z) (1-q^2 z)
(1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-q^2 z) (1+pqz)^{2n}
\ = p^2 [z^n] (1+pqz)^{2n}
- p^2 [z^n] q^2 z (1+pqz)^{2n}
\ = p^2 p^n q^n {2nchoose n}
- p^2 q^2 [z^{n-1}] (1+pqz)^{2n}
\ = p^{n+2} q^n {2nchoose n}
- p^2 q^2 p^{n-1} q^{n-1} {2nchoose n-1}.$$
This is indeed
$$bbox[5px,border:2px solid #00A000]{
p^{n+2} q^n {2nchoose n}
- p^{n+1} q^{n+1} {2nchoose n+1}}$$
as claimed.
Remark. It might be simpler not to merge the $p^n q^n$ into the
coefficient extractor. Further commentary TBA.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071705%2fcounting-proability-and-binomial-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We consider $(p+q)^2P_{2n}$ instead of $P_{2n}$ (because then our identity will be homogeneous). Then, we will simply compare coefficents of monomials $p^kq^{2n+2-k}$ in both sides of identity.
Note that (from equality $p+q=1$)
$$
P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p+q)^2,
$$
which equals
$$
sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p^2+2pq+q^2)=sum_{k=n+1}^{2n}{2n choose k}p^{k+2}q^{2n-k}+sum_{k=n+1}^{2n}2{2n choose k}p^{k+1}q^{2n-k+1}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}=sum_{k=n+3}^{2n+2}{2n choose k-2}p^{k}q^{2n+2-k}+sum_{k=n+2}^{2n+1}2{2n choose k-1}p^{k}q^{2n+2-k}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}.
$$
Therefore, $P_{2n}$ equals
$$
sum_{k=n+2}^{2n+2}left({2n choose k}+2{2n choose k-1}+{2n choose k-2}right)p^kq^{2n+2-k}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
We also know that
$$
{2n choose k}+2{2n choose k-1}+{2n choose k-2}=left({2n choose k}+{2n choose k-1}right)+left({2n choose k-1}+{2n choose k-2}right)={2n+1 choose k}+{2n+1 choose k-1}={2n+2 choose k},
$$
so we obtain
$$
P_{2n}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}=P_{2n+2}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
Hence,
$$
P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1},
$$
as desired.
$endgroup$
add a comment |
$begingroup$
We consider $(p+q)^2P_{2n}$ instead of $P_{2n}$ (because then our identity will be homogeneous). Then, we will simply compare coefficents of monomials $p^kq^{2n+2-k}$ in both sides of identity.
Note that (from equality $p+q=1$)
$$
P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p+q)^2,
$$
which equals
$$
sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p^2+2pq+q^2)=sum_{k=n+1}^{2n}{2n choose k}p^{k+2}q^{2n-k}+sum_{k=n+1}^{2n}2{2n choose k}p^{k+1}q^{2n-k+1}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}=sum_{k=n+3}^{2n+2}{2n choose k-2}p^{k}q^{2n+2-k}+sum_{k=n+2}^{2n+1}2{2n choose k-1}p^{k}q^{2n+2-k}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}.
$$
Therefore, $P_{2n}$ equals
$$
sum_{k=n+2}^{2n+2}left({2n choose k}+2{2n choose k-1}+{2n choose k-2}right)p^kq^{2n+2-k}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
We also know that
$$
{2n choose k}+2{2n choose k-1}+{2n choose k-2}=left({2n choose k}+{2n choose k-1}right)+left({2n choose k-1}+{2n choose k-2}right)={2n+1 choose k}+{2n+1 choose k-1}={2n+2 choose k},
$$
so we obtain
$$
P_{2n}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}=P_{2n+2}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
Hence,
$$
P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1},
$$
as desired.
$endgroup$
add a comment |
$begingroup$
We consider $(p+q)^2P_{2n}$ instead of $P_{2n}$ (because then our identity will be homogeneous). Then, we will simply compare coefficents of monomials $p^kq^{2n+2-k}$ in both sides of identity.
Note that (from equality $p+q=1$)
$$
P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p+q)^2,
$$
which equals
$$
sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p^2+2pq+q^2)=sum_{k=n+1}^{2n}{2n choose k}p^{k+2}q^{2n-k}+sum_{k=n+1}^{2n}2{2n choose k}p^{k+1}q^{2n-k+1}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}=sum_{k=n+3}^{2n+2}{2n choose k-2}p^{k}q^{2n+2-k}+sum_{k=n+2}^{2n+1}2{2n choose k-1}p^{k}q^{2n+2-k}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}.
$$
Therefore, $P_{2n}$ equals
$$
sum_{k=n+2}^{2n+2}left({2n choose k}+2{2n choose k-1}+{2n choose k-2}right)p^kq^{2n+2-k}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
We also know that
$$
{2n choose k}+2{2n choose k-1}+{2n choose k-2}=left({2n choose k}+{2n choose k-1}right)+left({2n choose k-1}+{2n choose k-2}right)={2n+1 choose k}+{2n+1 choose k-1}={2n+2 choose k},
$$
so we obtain
$$
P_{2n}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}=P_{2n+2}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
Hence,
$$
P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1},
$$
as desired.
$endgroup$
We consider $(p+q)^2P_{2n}$ instead of $P_{2n}$ (because then our identity will be homogeneous). Then, we will simply compare coefficents of monomials $p^kq^{2n+2-k}$ in both sides of identity.
Note that (from equality $p+q=1$)
$$
P_{2n}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k}=sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p+q)^2,
$$
which equals
$$
sum_{k=n+1}^{2n}{2n choose k}p^kq^{2n-k} (p^2+2pq+q^2)=sum_{k=n+1}^{2n}{2n choose k}p^{k+2}q^{2n-k}+sum_{k=n+1}^{2n}2{2n choose k}p^{k+1}q^{2n-k+1}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}=sum_{k=n+3}^{2n+2}{2n choose k-2}p^{k}q^{2n+2-k}+sum_{k=n+2}^{2n+1}2{2n choose k-1}p^{k}q^{2n+2-k}+sum_{k=n+1}^{2n}{2n choose k}p^{k}q^{2n-k+2}.
$$
Therefore, $P_{2n}$ equals
$$
sum_{k=n+2}^{2n+2}left({2n choose k}+2{2n choose k-1}+{2n choose k-2}right)p^kq^{2n+2-k}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
We also know that
$$
{2n choose k}+2{2n choose k-1}+{2n choose k-2}=left({2n choose k}+{2n choose k-1}right)+left({2n choose k-1}+{2n choose k-2}right)={2n+1 choose k}+{2n+1 choose k-1}={2n+2 choose k},
$$
so we obtain
$$
P_{2n}=sum_{k=n+2}^{2n+2}{2n+2 choose k}p^kq^{2n+2-k}=P_{2n+2}-left({2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1}right).
$$
Hence,
$$
P_{2n+2}=P_{2n}+{2n choose n}p^{n+2}q^{n}-{2n choose n+1}p^{n+1}q^{n+1},
$$
as desired.
answered Jan 13 at 13:10
richrowrichrow
1615
1615
add a comment |
add a comment |
$begingroup$
The equality reduces to
$$
binom{2 n}{n+1} p^{n+1} (1-p)^{n-1} , _2F_1left(1,1-n;n+2;frac{p}{p-1}right)+binom{2 n}{n} p^{n+2} (1-p)^n-binom{2 n}{n+1} p^{n+1} (1-p)^{n+1}=binom{2 (n+1)}{n+2} (1-p)^{-n+2 (n+1)-2} p^{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)
$$
Let $w=p/(1-p)$, then the above is
$$
binom{2 n}{n+1} left((w+1)^2 , _2F_1(1,1-n;n+2;-w)-1right)+w binom{2 n}{n}=w binom{2 (n+1)}{n+2} , _2F_1(1,-n;n+3;-w)
$$
We can then extract the coefficient for $w^m$ from both side for $m in {0,dots,n}$ to see that this equality holds.
$endgroup$
add a comment |
$begingroup$
The equality reduces to
$$
binom{2 n}{n+1} p^{n+1} (1-p)^{n-1} , _2F_1left(1,1-n;n+2;frac{p}{p-1}right)+binom{2 n}{n} p^{n+2} (1-p)^n-binom{2 n}{n+1} p^{n+1} (1-p)^{n+1}=binom{2 (n+1)}{n+2} (1-p)^{-n+2 (n+1)-2} p^{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)
$$
Let $w=p/(1-p)$, then the above is
$$
binom{2 n}{n+1} left((w+1)^2 , _2F_1(1,1-n;n+2;-w)-1right)+w binom{2 n}{n}=w binom{2 (n+1)}{n+2} , _2F_1(1,-n;n+3;-w)
$$
We can then extract the coefficient for $w^m$ from both side for $m in {0,dots,n}$ to see that this equality holds.
$endgroup$
add a comment |
$begingroup$
The equality reduces to
$$
binom{2 n}{n+1} p^{n+1} (1-p)^{n-1} , _2F_1left(1,1-n;n+2;frac{p}{p-1}right)+binom{2 n}{n} p^{n+2} (1-p)^n-binom{2 n}{n+1} p^{n+1} (1-p)^{n+1}=binom{2 (n+1)}{n+2} (1-p)^{-n+2 (n+1)-2} p^{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)
$$
Let $w=p/(1-p)$, then the above is
$$
binom{2 n}{n+1} left((w+1)^2 , _2F_1(1,1-n;n+2;-w)-1right)+w binom{2 n}{n}=w binom{2 (n+1)}{n+2} , _2F_1(1,-n;n+3;-w)
$$
We can then extract the coefficient for $w^m$ from both side for $m in {0,dots,n}$ to see that this equality holds.
$endgroup$
The equality reduces to
$$
binom{2 n}{n+1} p^{n+1} (1-p)^{n-1} , _2F_1left(1,1-n;n+2;frac{p}{p-1}right)+binom{2 n}{n} p^{n+2} (1-p)^n-binom{2 n}{n+1} p^{n+1} (1-p)^{n+1}=binom{2 (n+1)}{n+2} (1-p)^{-n+2 (n+1)-2} p^{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)
$$
Let $w=p/(1-p)$, then the above is
$$
binom{2 n}{n+1} left((w+1)^2 , _2F_1(1,1-n;n+2;-w)-1right)+w binom{2 n}{n}=w binom{2 (n+1)}{n+2} , _2F_1(1,-n;n+3;-w)
$$
We can then extract the coefficient for $w^m$ from both side for $m in {0,dots,n}$ to see that this equality holds.
answered Jan 13 at 11:23
ablmfablmf
2,52142352
2,52142352
add a comment |
add a comment |
$begingroup$
Forget the requirement that $0<p<q<1$; it is unnecessary. So let $p$ and $q$
be any reals satisfying $p+q=1$.
Also, let me extend the stage a little bit:
Definition. Let $m$ and $n$ be integers such that $ngeq mgeq0$. Then, we
let
begin{equation}
Q_{n,m}=sum_{k=m}^{n}dbinom{n}{k}p^{k}q^{n-k}.
end{equation}
With this definition, your $P_{2n}$ is $Q_{2n,n+1}$, while your $P_{2n+2}$ is
$Q_{2n+2,n+2}$. Thus, your claim becomes:
Theorem 1. Let $n$ be a nonnegative integer. Then,
begin{equation}
Q_{2n+2,n+2}=Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}
p^{n+1}q^{n+1}.
end{equation}
I shall derive this from the following:
Lemma 2. Let $m$ and $n$ be integers such that $ngeq mgeq1$. Then,
begin{equation}
Q_{n,m}=Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{equation}
Proof of Lemma 2. From $ngeq mgeq1$, we obtain $n-1geq m-1geq0$. Now,
the definition of $Q_{n-1,m-1}$ yields
begin{equation}
Q_{n-1,m-1}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}underbrace{q^{n-1-k}
}_{=q^{n-k-1}}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}.
label{darij1.pf.l2.0}
tag{1}
end{equation}
But the definition of $Q_{n,m}$ yields
begin{align}
Q_{n,m} & =sum_{k=m}^{n}underbrace{dbinom{n}{k}}_{substack{=dbinom
{n-1}{k-1}+dbinom{n-1}{k}\text{(by the recurrence of the binomial
coefficients)}}}p^{k}q^{n-k}=sum_{k=m}^{n}left( dbinom{n-1}{k-1}
+dbinom{n-1}{k}right) p^{k}q^{n-k}nonumber\
& =sum_{k=m}^{n}dbinom{n-1}{k-1}p^{k}q^{n-k}+sum_{k=m}^{n}dbinom{n-1}
{k}p^{k}q^{n-k}nonumber\
& =sum_{k=m-1}^{n-1}underbrace{dbinom{n-1}{left( k+1right) -1}
}_{=dbinom{n-1}{k}}p^{k+1}underbrace{q^{n-left( k+1right) }}
_{=q^{n-k-1}}+sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}nonumber\
& qquadleft( text{here, we have substituted }k+1text{ for }ktext{ in
the first sum}right) nonumber\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum_{k=m}^{n}
dbinom{n-1}{k}p^{k}q^{n-k}.
label{darij1.pf.l2.1}
tag{2}
end{align}
But we have
begin{equation}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m}^{n}dbinom{n-1}{k}
p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }
end{equation}
and
begin{align*}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k} & =sum_{k=m-1}^{n-1}dbinom
{n-1}{k}p^{k}q^{n-k}+underbrace{dbinom{n-1}{n}}_{substack{=0\text{(since
}n-1geq0text{ and }n-1<ntext{)}}}p^{n}q^{n-n}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{align*}
Comparing these two equalities, we obtain
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left(
m-1right) }=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{equation}
Thus,
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }.
end{equation}
Hence, eqref{darij1.pf.l2.1} becomes
begin{align*}
Q_{n,m} & =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+underbrace{sum
_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum
_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}left( p^{k+1}q^{n-k-1}+p^{k}q^{n-k}right) }-dbinom{n-1}{m-1}
p^{m-1}underbrace{q^{n-left( m-1right) }}_{=q^{n-m+1}}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}left( underbrace{p^{k+1}}_{=pp^{k}
}q^{n-k-1}+p^{k}underbrace{q^{n-k}}_{=qq^{n-k-1}}right) -dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}underbrace{left( pp^{k}q^{n-k-1}
+p^{k}qq^{n-k-1}right) }_{substack{=left( p+qright) p^{k}
q^{n-k-1}=p^{k}q^{n-k-1}\text{(since }p+q=1text{)}}}-dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}}
_{substack{=Q_{n-1,m-1}\text{(by eqref{darij1.pf.l2.0})}}}-dbinom
{n-1}{m-1}p^{m-1}q^{n-m+1}\
& =Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{align*}
This proves Lemma 2. $blacksquare$
Proof of Theorem 1. We have $left( 1-q-pqright) -p^{2}=-left(
p+1right) underbrace{left( p+q-1right) }_{substack{=0\text{(since
}p+q=1text{)}}}=0$, thus $1-q-pq=p^{2}$.
Lemma 2 (applied to $2n+2$ and $n+2$ instead of $n$ and $m$) yields
begin{align}
Q_{2n+2,n+2} & =underbrace{Q_{2n+1,n+1}}_{substack{=Q_{2n,n}-dbinom{2n}
{n}p^{n}q^{left( 2n+1right) -left( n+1right) +1}\text{(by Lemma 2,
applied to }2n+1text{ and }n+1\text{instead of }ntext{ and }mtext{)}
}}-underbrace{dbinom{2n+1}{n+1}}_{substack{=dbinom{2n}{n}+dbinom{2n}
{n+1}\text{(by the recurrence of the binomial coefficients)}}}p^{n+1}
underbrace{q^{left( 2n+2right) -left( n+2right) +1}}_{=q^{n+1}
}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}underbrace{q^{left( 2n+1right) -left(
n+1right) +1}}_{=q^{n+1}}-underbrace{left( dbinom{2n}{n}+dbinom
{2n}{n+1}right) p^{n+1}q^{n+1}}_{=dbinom{2n}{n}p^{n+1}q^{n+1}+dbinom
{2n}{n+1}p^{n+1}q^{n+1}}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-left( dbinom{2n}{n}p^{n+1}
q^{n+1}+dbinom{2n}{n+1}p^{n+1}q^{n+1}right) nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
label{darij1.pf.t1.1}
tag{3}
end{align}
But the definition of $Q_{2n,n+1}$ yields $Q_{2n,n+1}=sum_{k=n+1}^{2n}
dbinom{2n}{k}p^{k}q^{2n-k}$. Meanwhile, the definition of $Q_{2n,n}$ yields
begin{align*}
Q_{2n,n} & =sum_{k=n}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}=underbrace{sum
_{k=n+1}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}}_{=Q_{2n,n+1}}+dbinom{2n}{n}
p^{n}underbrace{q^{2n-n}}_{=q^{n}}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}.
end{align*}
Thus,
eqref{darij1.pf.t1.1} becomes
begin{align*}
Q_{2n+2,n+2} & =underbrace{Q_{2n,n}}_{=Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}
}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}
{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom
{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( p^{n}q^{n}-p^{n}
q^{n+1}-p^{n+1}q^{n+1}right) }_{=left( 1-q-pqright) p^{n}q^{n}}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( 1-q-pqright) }_{=p^{2}}
p^{n}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{p^{2}p^{n}}_{=p^{n+2}}q^{n}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
end{align*}
This proves Theorem 1. $blacksquare$
$endgroup$
add a comment |
$begingroup$
Forget the requirement that $0<p<q<1$; it is unnecessary. So let $p$ and $q$
be any reals satisfying $p+q=1$.
Also, let me extend the stage a little bit:
Definition. Let $m$ and $n$ be integers such that $ngeq mgeq0$. Then, we
let
begin{equation}
Q_{n,m}=sum_{k=m}^{n}dbinom{n}{k}p^{k}q^{n-k}.
end{equation}
With this definition, your $P_{2n}$ is $Q_{2n,n+1}$, while your $P_{2n+2}$ is
$Q_{2n+2,n+2}$. Thus, your claim becomes:
Theorem 1. Let $n$ be a nonnegative integer. Then,
begin{equation}
Q_{2n+2,n+2}=Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}
p^{n+1}q^{n+1}.
end{equation}
I shall derive this from the following:
Lemma 2. Let $m$ and $n$ be integers such that $ngeq mgeq1$. Then,
begin{equation}
Q_{n,m}=Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{equation}
Proof of Lemma 2. From $ngeq mgeq1$, we obtain $n-1geq m-1geq0$. Now,
the definition of $Q_{n-1,m-1}$ yields
begin{equation}
Q_{n-1,m-1}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}underbrace{q^{n-1-k}
}_{=q^{n-k-1}}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}.
label{darij1.pf.l2.0}
tag{1}
end{equation}
But the definition of $Q_{n,m}$ yields
begin{align}
Q_{n,m} & =sum_{k=m}^{n}underbrace{dbinom{n}{k}}_{substack{=dbinom
{n-1}{k-1}+dbinom{n-1}{k}\text{(by the recurrence of the binomial
coefficients)}}}p^{k}q^{n-k}=sum_{k=m}^{n}left( dbinom{n-1}{k-1}
+dbinom{n-1}{k}right) p^{k}q^{n-k}nonumber\
& =sum_{k=m}^{n}dbinom{n-1}{k-1}p^{k}q^{n-k}+sum_{k=m}^{n}dbinom{n-1}
{k}p^{k}q^{n-k}nonumber\
& =sum_{k=m-1}^{n-1}underbrace{dbinom{n-1}{left( k+1right) -1}
}_{=dbinom{n-1}{k}}p^{k+1}underbrace{q^{n-left( k+1right) }}
_{=q^{n-k-1}}+sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}nonumber\
& qquadleft( text{here, we have substituted }k+1text{ for }ktext{ in
the first sum}right) nonumber\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum_{k=m}^{n}
dbinom{n-1}{k}p^{k}q^{n-k}.
label{darij1.pf.l2.1}
tag{2}
end{align}
But we have
begin{equation}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m}^{n}dbinom{n-1}{k}
p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }
end{equation}
and
begin{align*}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k} & =sum_{k=m-1}^{n-1}dbinom
{n-1}{k}p^{k}q^{n-k}+underbrace{dbinom{n-1}{n}}_{substack{=0\text{(since
}n-1geq0text{ and }n-1<ntext{)}}}p^{n}q^{n-n}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{align*}
Comparing these two equalities, we obtain
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left(
m-1right) }=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{equation}
Thus,
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }.
end{equation}
Hence, eqref{darij1.pf.l2.1} becomes
begin{align*}
Q_{n,m} & =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+underbrace{sum
_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum
_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}left( p^{k+1}q^{n-k-1}+p^{k}q^{n-k}right) }-dbinom{n-1}{m-1}
p^{m-1}underbrace{q^{n-left( m-1right) }}_{=q^{n-m+1}}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}left( underbrace{p^{k+1}}_{=pp^{k}
}q^{n-k-1}+p^{k}underbrace{q^{n-k}}_{=qq^{n-k-1}}right) -dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}underbrace{left( pp^{k}q^{n-k-1}
+p^{k}qq^{n-k-1}right) }_{substack{=left( p+qright) p^{k}
q^{n-k-1}=p^{k}q^{n-k-1}\text{(since }p+q=1text{)}}}-dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}}
_{substack{=Q_{n-1,m-1}\text{(by eqref{darij1.pf.l2.0})}}}-dbinom
{n-1}{m-1}p^{m-1}q^{n-m+1}\
& =Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{align*}
This proves Lemma 2. $blacksquare$
Proof of Theorem 1. We have $left( 1-q-pqright) -p^{2}=-left(
p+1right) underbrace{left( p+q-1right) }_{substack{=0\text{(since
}p+q=1text{)}}}=0$, thus $1-q-pq=p^{2}$.
Lemma 2 (applied to $2n+2$ and $n+2$ instead of $n$ and $m$) yields
begin{align}
Q_{2n+2,n+2} & =underbrace{Q_{2n+1,n+1}}_{substack{=Q_{2n,n}-dbinom{2n}
{n}p^{n}q^{left( 2n+1right) -left( n+1right) +1}\text{(by Lemma 2,
applied to }2n+1text{ and }n+1\text{instead of }ntext{ and }mtext{)}
}}-underbrace{dbinom{2n+1}{n+1}}_{substack{=dbinom{2n}{n}+dbinom{2n}
{n+1}\text{(by the recurrence of the binomial coefficients)}}}p^{n+1}
underbrace{q^{left( 2n+2right) -left( n+2right) +1}}_{=q^{n+1}
}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}underbrace{q^{left( 2n+1right) -left(
n+1right) +1}}_{=q^{n+1}}-underbrace{left( dbinom{2n}{n}+dbinom
{2n}{n+1}right) p^{n+1}q^{n+1}}_{=dbinom{2n}{n}p^{n+1}q^{n+1}+dbinom
{2n}{n+1}p^{n+1}q^{n+1}}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-left( dbinom{2n}{n}p^{n+1}
q^{n+1}+dbinom{2n}{n+1}p^{n+1}q^{n+1}right) nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
label{darij1.pf.t1.1}
tag{3}
end{align}
But the definition of $Q_{2n,n+1}$ yields $Q_{2n,n+1}=sum_{k=n+1}^{2n}
dbinom{2n}{k}p^{k}q^{2n-k}$. Meanwhile, the definition of $Q_{2n,n}$ yields
begin{align*}
Q_{2n,n} & =sum_{k=n}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}=underbrace{sum
_{k=n+1}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}}_{=Q_{2n,n+1}}+dbinom{2n}{n}
p^{n}underbrace{q^{2n-n}}_{=q^{n}}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}.
end{align*}
Thus,
eqref{darij1.pf.t1.1} becomes
begin{align*}
Q_{2n+2,n+2} & =underbrace{Q_{2n,n}}_{=Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}
}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}
{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom
{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( p^{n}q^{n}-p^{n}
q^{n+1}-p^{n+1}q^{n+1}right) }_{=left( 1-q-pqright) p^{n}q^{n}}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( 1-q-pqright) }_{=p^{2}}
p^{n}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{p^{2}p^{n}}_{=p^{n+2}}q^{n}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
end{align*}
This proves Theorem 1. $blacksquare$
$endgroup$
add a comment |
$begingroup$
Forget the requirement that $0<p<q<1$; it is unnecessary. So let $p$ and $q$
be any reals satisfying $p+q=1$.
Also, let me extend the stage a little bit:
Definition. Let $m$ and $n$ be integers such that $ngeq mgeq0$. Then, we
let
begin{equation}
Q_{n,m}=sum_{k=m}^{n}dbinom{n}{k}p^{k}q^{n-k}.
end{equation}
With this definition, your $P_{2n}$ is $Q_{2n,n+1}$, while your $P_{2n+2}$ is
$Q_{2n+2,n+2}$. Thus, your claim becomes:
Theorem 1. Let $n$ be a nonnegative integer. Then,
begin{equation}
Q_{2n+2,n+2}=Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}
p^{n+1}q^{n+1}.
end{equation}
I shall derive this from the following:
Lemma 2. Let $m$ and $n$ be integers such that $ngeq mgeq1$. Then,
begin{equation}
Q_{n,m}=Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{equation}
Proof of Lemma 2. From $ngeq mgeq1$, we obtain $n-1geq m-1geq0$. Now,
the definition of $Q_{n-1,m-1}$ yields
begin{equation}
Q_{n-1,m-1}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}underbrace{q^{n-1-k}
}_{=q^{n-k-1}}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}.
label{darij1.pf.l2.0}
tag{1}
end{equation}
But the definition of $Q_{n,m}$ yields
begin{align}
Q_{n,m} & =sum_{k=m}^{n}underbrace{dbinom{n}{k}}_{substack{=dbinom
{n-1}{k-1}+dbinom{n-1}{k}\text{(by the recurrence of the binomial
coefficients)}}}p^{k}q^{n-k}=sum_{k=m}^{n}left( dbinom{n-1}{k-1}
+dbinom{n-1}{k}right) p^{k}q^{n-k}nonumber\
& =sum_{k=m}^{n}dbinom{n-1}{k-1}p^{k}q^{n-k}+sum_{k=m}^{n}dbinom{n-1}
{k}p^{k}q^{n-k}nonumber\
& =sum_{k=m-1}^{n-1}underbrace{dbinom{n-1}{left( k+1right) -1}
}_{=dbinom{n-1}{k}}p^{k+1}underbrace{q^{n-left( k+1right) }}
_{=q^{n-k-1}}+sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}nonumber\
& qquadleft( text{here, we have substituted }k+1text{ for }ktext{ in
the first sum}right) nonumber\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum_{k=m}^{n}
dbinom{n-1}{k}p^{k}q^{n-k}.
label{darij1.pf.l2.1}
tag{2}
end{align}
But we have
begin{equation}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m}^{n}dbinom{n-1}{k}
p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }
end{equation}
and
begin{align*}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k} & =sum_{k=m-1}^{n-1}dbinom
{n-1}{k}p^{k}q^{n-k}+underbrace{dbinom{n-1}{n}}_{substack{=0\text{(since
}n-1geq0text{ and }n-1<ntext{)}}}p^{n}q^{n-n}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{align*}
Comparing these two equalities, we obtain
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left(
m-1right) }=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{equation}
Thus,
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }.
end{equation}
Hence, eqref{darij1.pf.l2.1} becomes
begin{align*}
Q_{n,m} & =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+underbrace{sum
_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum
_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}left( p^{k+1}q^{n-k-1}+p^{k}q^{n-k}right) }-dbinom{n-1}{m-1}
p^{m-1}underbrace{q^{n-left( m-1right) }}_{=q^{n-m+1}}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}left( underbrace{p^{k+1}}_{=pp^{k}
}q^{n-k-1}+p^{k}underbrace{q^{n-k}}_{=qq^{n-k-1}}right) -dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}underbrace{left( pp^{k}q^{n-k-1}
+p^{k}qq^{n-k-1}right) }_{substack{=left( p+qright) p^{k}
q^{n-k-1}=p^{k}q^{n-k-1}\text{(since }p+q=1text{)}}}-dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}}
_{substack{=Q_{n-1,m-1}\text{(by eqref{darij1.pf.l2.0})}}}-dbinom
{n-1}{m-1}p^{m-1}q^{n-m+1}\
& =Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{align*}
This proves Lemma 2. $blacksquare$
Proof of Theorem 1. We have $left( 1-q-pqright) -p^{2}=-left(
p+1right) underbrace{left( p+q-1right) }_{substack{=0\text{(since
}p+q=1text{)}}}=0$, thus $1-q-pq=p^{2}$.
Lemma 2 (applied to $2n+2$ and $n+2$ instead of $n$ and $m$) yields
begin{align}
Q_{2n+2,n+2} & =underbrace{Q_{2n+1,n+1}}_{substack{=Q_{2n,n}-dbinom{2n}
{n}p^{n}q^{left( 2n+1right) -left( n+1right) +1}\text{(by Lemma 2,
applied to }2n+1text{ and }n+1\text{instead of }ntext{ and }mtext{)}
}}-underbrace{dbinom{2n+1}{n+1}}_{substack{=dbinom{2n}{n}+dbinom{2n}
{n+1}\text{(by the recurrence of the binomial coefficients)}}}p^{n+1}
underbrace{q^{left( 2n+2right) -left( n+2right) +1}}_{=q^{n+1}
}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}underbrace{q^{left( 2n+1right) -left(
n+1right) +1}}_{=q^{n+1}}-underbrace{left( dbinom{2n}{n}+dbinom
{2n}{n+1}right) p^{n+1}q^{n+1}}_{=dbinom{2n}{n}p^{n+1}q^{n+1}+dbinom
{2n}{n+1}p^{n+1}q^{n+1}}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-left( dbinom{2n}{n}p^{n+1}
q^{n+1}+dbinom{2n}{n+1}p^{n+1}q^{n+1}right) nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
label{darij1.pf.t1.1}
tag{3}
end{align}
But the definition of $Q_{2n,n+1}$ yields $Q_{2n,n+1}=sum_{k=n+1}^{2n}
dbinom{2n}{k}p^{k}q^{2n-k}$. Meanwhile, the definition of $Q_{2n,n}$ yields
begin{align*}
Q_{2n,n} & =sum_{k=n}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}=underbrace{sum
_{k=n+1}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}}_{=Q_{2n,n+1}}+dbinom{2n}{n}
p^{n}underbrace{q^{2n-n}}_{=q^{n}}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}.
end{align*}
Thus,
eqref{darij1.pf.t1.1} becomes
begin{align*}
Q_{2n+2,n+2} & =underbrace{Q_{2n,n}}_{=Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}
}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}
{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom
{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( p^{n}q^{n}-p^{n}
q^{n+1}-p^{n+1}q^{n+1}right) }_{=left( 1-q-pqright) p^{n}q^{n}}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( 1-q-pqright) }_{=p^{2}}
p^{n}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{p^{2}p^{n}}_{=p^{n+2}}q^{n}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
end{align*}
This proves Theorem 1. $blacksquare$
$endgroup$
Forget the requirement that $0<p<q<1$; it is unnecessary. So let $p$ and $q$
be any reals satisfying $p+q=1$.
Also, let me extend the stage a little bit:
Definition. Let $m$ and $n$ be integers such that $ngeq mgeq0$. Then, we
let
begin{equation}
Q_{n,m}=sum_{k=m}^{n}dbinom{n}{k}p^{k}q^{n-k}.
end{equation}
With this definition, your $P_{2n}$ is $Q_{2n,n+1}$, while your $P_{2n+2}$ is
$Q_{2n+2,n+2}$. Thus, your claim becomes:
Theorem 1. Let $n$ be a nonnegative integer. Then,
begin{equation}
Q_{2n+2,n+2}=Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}
p^{n+1}q^{n+1}.
end{equation}
I shall derive this from the following:
Lemma 2. Let $m$ and $n$ be integers such that $ngeq mgeq1$. Then,
begin{equation}
Q_{n,m}=Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{equation}
Proof of Lemma 2. From $ngeq mgeq1$, we obtain $n-1geq m-1geq0$. Now,
the definition of $Q_{n-1,m-1}$ yields
begin{equation}
Q_{n-1,m-1}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}underbrace{q^{n-1-k}
}_{=q^{n-k-1}}=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}.
label{darij1.pf.l2.0}
tag{1}
end{equation}
But the definition of $Q_{n,m}$ yields
begin{align}
Q_{n,m} & =sum_{k=m}^{n}underbrace{dbinom{n}{k}}_{substack{=dbinom
{n-1}{k-1}+dbinom{n-1}{k}\text{(by the recurrence of the binomial
coefficients)}}}p^{k}q^{n-k}=sum_{k=m}^{n}left( dbinom{n-1}{k-1}
+dbinom{n-1}{k}right) p^{k}q^{n-k}nonumber\
& =sum_{k=m}^{n}dbinom{n-1}{k-1}p^{k}q^{n-k}+sum_{k=m}^{n}dbinom{n-1}
{k}p^{k}q^{n-k}nonumber\
& =sum_{k=m-1}^{n-1}underbrace{dbinom{n-1}{left( k+1right) -1}
}_{=dbinom{n-1}{k}}p^{k+1}underbrace{q^{n-left( k+1right) }}
_{=q^{n-k-1}}+sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}nonumber\
& qquadleft( text{here, we have substituted }k+1text{ for }ktext{ in
the first sum}right) nonumber\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum_{k=m}^{n}
dbinom{n-1}{k}p^{k}q^{n-k}.
label{darij1.pf.l2.1}
tag{2}
end{align}
But we have
begin{equation}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m}^{n}dbinom{n-1}{k}
p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }
end{equation}
and
begin{align*}
sum_{k=m-1}^{n}dbinom{n-1}{k}p^{k}q^{n-k} & =sum_{k=m-1}^{n-1}dbinom
{n-1}{k}p^{k}q^{n-k}+underbrace{dbinom{n-1}{n}}_{substack{=0\text{(since
}n-1geq0text{ and }n-1<ntext{)}}}p^{n}q^{n-n}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{align*}
Comparing these two equalities, we obtain
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}+dbinom{n-1}{m-1}p^{m-1}q^{n-left(
m-1right) }=sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}.
end{equation}
Thus,
begin{equation}
sum_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }.
end{equation}
Hence, eqref{darij1.pf.l2.1} becomes
begin{align*}
Q_{n,m} & =sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+underbrace{sum
_{k=m}^{n}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}p^{k}q^{n-k}-dbinom{n-1}{m-1}p^{m-1}q^{n-left( m-1right) }}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k+1}q^{n-k-1}+sum
_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k}}_{=sum_{k=m-1}^{n-1}dbinom{n-1}
{k}left( p^{k+1}q^{n-k-1}+p^{k}q^{n-k}right) }-dbinom{n-1}{m-1}
p^{m-1}underbrace{q^{n-left( m-1right) }}_{=q^{n-m+1}}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}left( underbrace{p^{k+1}}_{=pp^{k}
}q^{n-k-1}+p^{k}underbrace{q^{n-k}}_{=qq^{n-k-1}}right) -dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =sum_{k=m-1}^{n-1}dbinom{n-1}{k}underbrace{left( pp^{k}q^{n-k-1}
+p^{k}qq^{n-k-1}right) }_{substack{=left( p+qright) p^{k}
q^{n-k-1}=p^{k}q^{n-k-1}\text{(since }p+q=1text{)}}}-dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\
& =underbrace{sum_{k=m-1}^{n-1}dbinom{n-1}{k}p^{k}q^{n-k-1}}
_{substack{=Q_{n-1,m-1}\text{(by eqref{darij1.pf.l2.0})}}}-dbinom
{n-1}{m-1}p^{m-1}q^{n-m+1}\
& =Q_{n-1,m-1}-dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
end{align*}
This proves Lemma 2. $blacksquare$
Proof of Theorem 1. We have $left( 1-q-pqright) -p^{2}=-left(
p+1right) underbrace{left( p+q-1right) }_{substack{=0\text{(since
}p+q=1text{)}}}=0$, thus $1-q-pq=p^{2}$.
Lemma 2 (applied to $2n+2$ and $n+2$ instead of $n$ and $m$) yields
begin{align}
Q_{2n+2,n+2} & =underbrace{Q_{2n+1,n+1}}_{substack{=Q_{2n,n}-dbinom{2n}
{n}p^{n}q^{left( 2n+1right) -left( n+1right) +1}\text{(by Lemma 2,
applied to }2n+1text{ and }n+1\text{instead of }ntext{ and }mtext{)}
}}-underbrace{dbinom{2n+1}{n+1}}_{substack{=dbinom{2n}{n}+dbinom{2n}
{n+1}\text{(by the recurrence of the binomial coefficients)}}}p^{n+1}
underbrace{q^{left( 2n+2right) -left( n+2right) +1}}_{=q^{n+1}
}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}underbrace{q^{left( 2n+1right) -left(
n+1right) +1}}_{=q^{n+1}}-underbrace{left( dbinom{2n}{n}+dbinom
{2n}{n+1}right) p^{n+1}q^{n+1}}_{=dbinom{2n}{n}p^{n+1}q^{n+1}+dbinom
{2n}{n+1}p^{n+1}q^{n+1}}nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-left( dbinom{2n}{n}p^{n+1}
q^{n+1}+dbinom{2n}{n+1}p^{n+1}q^{n+1}right) nonumber\
& =Q_{2n,n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
label{darij1.pf.t1.1}
tag{3}
end{align}
But the definition of $Q_{2n,n+1}$ yields $Q_{2n,n+1}=sum_{k=n+1}^{2n}
dbinom{2n}{k}p^{k}q^{2n-k}$. Meanwhile, the definition of $Q_{2n,n}$ yields
begin{align*}
Q_{2n,n} & =sum_{k=n}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}=underbrace{sum
_{k=n+1}^{2n}dbinom{2n}{k}p^{k}q^{2n-k}}_{=Q_{2n,n+1}}+dbinom{2n}{n}
p^{n}underbrace{q^{2n-n}}_{=q^{n}}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}.
end{align*}
Thus,
eqref{darij1.pf.t1.1} becomes
begin{align*}
Q_{2n+2,n+2} & =underbrace{Q_{2n,n}}_{=Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}
}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}
{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n}q^{n}-dbinom{2n}{n}p^{n}q^{n+1}-dbinom
{2n}{n}p^{n+1}q^{n+1}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( p^{n}q^{n}-p^{n}
q^{n+1}-p^{n+1}q^{n+1}right) }_{=left( 1-q-pqright) p^{n}q^{n}}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{left( 1-q-pqright) }_{=p^{2}}
p^{n}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}underbrace{p^{2}p^{n}}_{=p^{n+2}}q^{n}
-dbinom{2n}{n+1}p^{n+1}q^{n+1}\
& =Q_{2n,n+1}+dbinom{2n}{n}p^{n+2}q^{n}-dbinom{2n}{n+1}p^{n+1}q^{n+1}.
end{align*}
This proves Theorem 1. $blacksquare$
answered Jan 13 at 13:12
darij grinbergdarij grinberg
10.5k33062
10.5k33062
add a comment |
add a comment |
$begingroup$
We have for the first sum
$$S = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
and for the second one
$$T = sum_{k=0}^{n-1} {2nchoose k+n+1} p^{k+n+1} q^{n-1-k}$$
and seek to show
$$S-T =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}$$
where $p+q=1.$ We see that with
$$Q_n = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
the claim becomes
$$Q_n - Q_{n-1} =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}.$$
Now
$$Q_n = p^{n+2} q^n
sum_{k=0}^n {2n+2choose k+n+2} p^{k} q^{-k}
= p^{n+2} q^n
sum_{k=0}^n {2n+2choose n-k} p^{k} q^{-k}
\ = p^{n+2} q^n
sum_{k=0}^n p^{k} q^{-k}
[z^{n-k}] (1+z)^{2n+2}
= p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{k=0}^n p^{k} q^{-k} z^k.$$
We may extend $k$ beyond $n$ owing to the coefficient extrator $[z^n]$
in front:
$$p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{kge 0} p^{k} q^{-k} z^k
= p^{n+2} q^n [z^n] (1+z)^{2n+2} frac{1}{1-pz/q}
\ = p^2 [z^n] (1+pqz)^{2n+2} frac{1}{1-p^2z}.$$
We thus have
$$Q_{n-1} = p^2 [z^{n-1}] (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] z (1+pqz)^{2n} frac{1}{1-p^2z}.$$
Subtracting we find
$$Q_n - Q_{n-1}
= p^2 [z^n] ((1+pqz)^2-z) (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-p^2 z) (1-q^2 z)
(1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-q^2 z) (1+pqz)^{2n}
\ = p^2 [z^n] (1+pqz)^{2n}
- p^2 [z^n] q^2 z (1+pqz)^{2n}
\ = p^2 p^n q^n {2nchoose n}
- p^2 q^2 [z^{n-1}] (1+pqz)^{2n}
\ = p^{n+2} q^n {2nchoose n}
- p^2 q^2 p^{n-1} q^{n-1} {2nchoose n-1}.$$
This is indeed
$$bbox[5px,border:2px solid #00A000]{
p^{n+2} q^n {2nchoose n}
- p^{n+1} q^{n+1} {2nchoose n+1}}$$
as claimed.
Remark. It might be simpler not to merge the $p^n q^n$ into the
coefficient extractor. Further commentary TBA.
$endgroup$
add a comment |
$begingroup$
We have for the first sum
$$S = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
and for the second one
$$T = sum_{k=0}^{n-1} {2nchoose k+n+1} p^{k+n+1} q^{n-1-k}$$
and seek to show
$$S-T =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}$$
where $p+q=1.$ We see that with
$$Q_n = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
the claim becomes
$$Q_n - Q_{n-1} =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}.$$
Now
$$Q_n = p^{n+2} q^n
sum_{k=0}^n {2n+2choose k+n+2} p^{k} q^{-k}
= p^{n+2} q^n
sum_{k=0}^n {2n+2choose n-k} p^{k} q^{-k}
\ = p^{n+2} q^n
sum_{k=0}^n p^{k} q^{-k}
[z^{n-k}] (1+z)^{2n+2}
= p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{k=0}^n p^{k} q^{-k} z^k.$$
We may extend $k$ beyond $n$ owing to the coefficient extrator $[z^n]$
in front:
$$p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{kge 0} p^{k} q^{-k} z^k
= p^{n+2} q^n [z^n] (1+z)^{2n+2} frac{1}{1-pz/q}
\ = p^2 [z^n] (1+pqz)^{2n+2} frac{1}{1-p^2z}.$$
We thus have
$$Q_{n-1} = p^2 [z^{n-1}] (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] z (1+pqz)^{2n} frac{1}{1-p^2z}.$$
Subtracting we find
$$Q_n - Q_{n-1}
= p^2 [z^n] ((1+pqz)^2-z) (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-p^2 z) (1-q^2 z)
(1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-q^2 z) (1+pqz)^{2n}
\ = p^2 [z^n] (1+pqz)^{2n}
- p^2 [z^n] q^2 z (1+pqz)^{2n}
\ = p^2 p^n q^n {2nchoose n}
- p^2 q^2 [z^{n-1}] (1+pqz)^{2n}
\ = p^{n+2} q^n {2nchoose n}
- p^2 q^2 p^{n-1} q^{n-1} {2nchoose n-1}.$$
This is indeed
$$bbox[5px,border:2px solid #00A000]{
p^{n+2} q^n {2nchoose n}
- p^{n+1} q^{n+1} {2nchoose n+1}}$$
as claimed.
Remark. It might be simpler not to merge the $p^n q^n$ into the
coefficient extractor. Further commentary TBA.
$endgroup$
add a comment |
$begingroup$
We have for the first sum
$$S = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
and for the second one
$$T = sum_{k=0}^{n-1} {2nchoose k+n+1} p^{k+n+1} q^{n-1-k}$$
and seek to show
$$S-T =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}$$
where $p+q=1.$ We see that with
$$Q_n = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
the claim becomes
$$Q_n - Q_{n-1} =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}.$$
Now
$$Q_n = p^{n+2} q^n
sum_{k=0}^n {2n+2choose k+n+2} p^{k} q^{-k}
= p^{n+2} q^n
sum_{k=0}^n {2n+2choose n-k} p^{k} q^{-k}
\ = p^{n+2} q^n
sum_{k=0}^n p^{k} q^{-k}
[z^{n-k}] (1+z)^{2n+2}
= p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{k=0}^n p^{k} q^{-k} z^k.$$
We may extend $k$ beyond $n$ owing to the coefficient extrator $[z^n]$
in front:
$$p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{kge 0} p^{k} q^{-k} z^k
= p^{n+2} q^n [z^n] (1+z)^{2n+2} frac{1}{1-pz/q}
\ = p^2 [z^n] (1+pqz)^{2n+2} frac{1}{1-p^2z}.$$
We thus have
$$Q_{n-1} = p^2 [z^{n-1}] (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] z (1+pqz)^{2n} frac{1}{1-p^2z}.$$
Subtracting we find
$$Q_n - Q_{n-1}
= p^2 [z^n] ((1+pqz)^2-z) (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-p^2 z) (1-q^2 z)
(1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-q^2 z) (1+pqz)^{2n}
\ = p^2 [z^n] (1+pqz)^{2n}
- p^2 [z^n] q^2 z (1+pqz)^{2n}
\ = p^2 p^n q^n {2nchoose n}
- p^2 q^2 [z^{n-1}] (1+pqz)^{2n}
\ = p^{n+2} q^n {2nchoose n}
- p^2 q^2 p^{n-1} q^{n-1} {2nchoose n-1}.$$
This is indeed
$$bbox[5px,border:2px solid #00A000]{
p^{n+2} q^n {2nchoose n}
- p^{n+1} q^{n+1} {2nchoose n+1}}$$
as claimed.
Remark. It might be simpler not to merge the $p^n q^n$ into the
coefficient extractor. Further commentary TBA.
$endgroup$
We have for the first sum
$$S = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
and for the second one
$$T = sum_{k=0}^{n-1} {2nchoose k+n+1} p^{k+n+1} q^{n-1-k}$$
and seek to show
$$S-T =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}$$
where $p+q=1.$ We see that with
$$Q_n = sum_{k=0}^n {2n+2choose k+n+2} p^{k+n+2} q^{n-k}$$
the claim becomes
$$Q_n - Q_{n-1} =
{2nchoose n} p^{n+2} q^n - {2nchoose n+1} p^{n+1} q^{n+1}.$$
Now
$$Q_n = p^{n+2} q^n
sum_{k=0}^n {2n+2choose k+n+2} p^{k} q^{-k}
= p^{n+2} q^n
sum_{k=0}^n {2n+2choose n-k} p^{k} q^{-k}
\ = p^{n+2} q^n
sum_{k=0}^n p^{k} q^{-k}
[z^{n-k}] (1+z)^{2n+2}
= p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{k=0}^n p^{k} q^{-k} z^k.$$
We may extend $k$ beyond $n$ owing to the coefficient extrator $[z^n]$
in front:
$$p^{n+2} q^n [z^n] (1+z)^{2n+2}
sum_{kge 0} p^{k} q^{-k} z^k
= p^{n+2} q^n [z^n] (1+z)^{2n+2} frac{1}{1-pz/q}
\ = p^2 [z^n] (1+pqz)^{2n+2} frac{1}{1-p^2z}.$$
We thus have
$$Q_{n-1} = p^2 [z^{n-1}] (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] z (1+pqz)^{2n} frac{1}{1-p^2z}.$$
Subtracting we find
$$Q_n - Q_{n-1}
= p^2 [z^n] ((1+pqz)^2-z) (1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-p^2 z) (1-q^2 z)
(1+pqz)^{2n} frac{1}{1-p^2z}
\ = p^2 [z^n] (1-q^2 z) (1+pqz)^{2n}
\ = p^2 [z^n] (1+pqz)^{2n}
- p^2 [z^n] q^2 z (1+pqz)^{2n}
\ = p^2 p^n q^n {2nchoose n}
- p^2 q^2 [z^{n-1}] (1+pqz)^{2n}
\ = p^{n+2} q^n {2nchoose n}
- p^2 q^2 p^{n-1} q^{n-1} {2nchoose n-1}.$$
This is indeed
$$bbox[5px,border:2px solid #00A000]{
p^{n+2} q^n {2nchoose n}
- p^{n+1} q^{n+1} {2nchoose n+1}}$$
as claimed.
Remark. It might be simpler not to merge the $p^n q^n$ into the
coefficient extractor. Further commentary TBA.
edited Jan 13 at 16:11
answered Jan 13 at 15:55
Marko RiedelMarko Riedel
39.7k339108
39.7k339108
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071705%2fcounting-proability-and-binomial-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is perhaps true. It reduces to $binom{2 n}{n+1} left((p-1)^2-, _2F_1left(1,1-n;n+2;frac{p}{p-1}right)right)+(p-1) p binom{2 n}{n}=(p-1) p binom{2 (n+1)}{n+2} , _2F_1left(1,-n;n+3;frac{p}{p-1}right)$. Though I do not know how to prove this.
$endgroup$
– ablmf
Jan 13 at 10:30