Approximate Identity in Schwartz Space
$begingroup$
Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,
for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.
for all $nin mathbb{Z}^+$
begin{equation}
int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
end{equation}- and for all $gamma >0$,
begin{equation}
int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
end{equation}
EDIT:
Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
begin{equation}
lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
end{equation}
convolution schwartz-space approximate-integration
$endgroup$
add a comment |
$begingroup$
Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,
for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.
for all $nin mathbb{Z}^+$
begin{equation}
int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
end{equation}- and for all $gamma >0$,
begin{equation}
int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
end{equation}
EDIT:
Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
begin{equation}
lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
end{equation}
convolution schwartz-space approximate-integration
$endgroup$
$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30
$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06
$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17
add a comment |
$begingroup$
Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,
for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.
for all $nin mathbb{Z}^+$
begin{equation}
int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
end{equation}- and for all $gamma >0$,
begin{equation}
int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
end{equation}
EDIT:
Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
begin{equation}
lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
end{equation}
convolution schwartz-space approximate-integration
$endgroup$
Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,
for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.
for all $nin mathbb{Z}^+$
begin{equation}
int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
end{equation}- and for all $gamma >0$,
begin{equation}
int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
end{equation}
EDIT:
Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
begin{equation}
lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
end{equation}
convolution schwartz-space approximate-integration
convolution schwartz-space approximate-integration
edited yesterday
Stephen Montgomery-Smith
17.7k12247
17.7k12247
asked Jan 8 at 19:45
ManiMani
52
52
$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30
$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06
$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17
add a comment |
$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30
$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06
$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17
$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30
$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30
$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06
$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06
$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17
$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
$$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
It is easily seen to satisfy the first two properties. But
$$ int_{mathbb R} |y|^alpha phi_x(y) , dy
ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
ge n^{-s} n^alpha ,$$
and this diverges if $alpha > s$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066633%2fapproximate-identity-in-schwartz-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
$$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
It is easily seen to satisfy the first two properties. But
$$ int_{mathbb R} |y|^alpha phi_x(y) , dy
ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
ge n^{-s} n^alpha ,$$
and this diverges if $alpha > s$.
$endgroup$
add a comment |
$begingroup$
It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
$$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
It is easily seen to satisfy the first two properties. But
$$ int_{mathbb R} |y|^alpha phi_x(y) , dy
ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
ge n^{-s} n^alpha ,$$
and this diverges if $alpha > s$.
$endgroup$
add a comment |
$begingroup$
It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
$$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
It is easily seen to satisfy the first two properties. But
$$ int_{mathbb R} |y|^alpha phi_x(y) , dy
ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
ge n^{-s} n^alpha ,$$
and this diverges if $alpha > s$.
$endgroup$
It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
$$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
It is easily seen to satisfy the first two properties. But
$$ int_{mathbb R} |y|^alpha phi_x(y) , dy
ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
ge n^{-s} n^alpha ,$$
and this diverges if $alpha > s$.
edited yesterday
answered yesterday
Stephen Montgomery-SmithStephen Montgomery-Smith
17.7k12247
17.7k12247
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066633%2fapproximate-identity-in-schwartz-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30
$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06
$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17