Approximate Identity in Schwartz Space












1












$begingroup$


Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,




  • for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.


  • for all $nin mathbb{Z}^+$
    begin{equation}
    int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
    end{equation}


  • and for all $gamma >0$,
    begin{equation}
    int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
    end{equation}

    EDIT:
    Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
    begin{equation}
    lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
    end{equation}











share|cite|improve this question











$endgroup$












  • $begingroup$
    yes, I forgot to write that
    $endgroup$
    – Mani
    Jan 8 at 20:30










  • $begingroup$
    This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
    $endgroup$
    – Mani
    Jan 8 at 22:06










  • $begingroup$
    Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
    $endgroup$
    – Mani
    Jan 8 at 22:17
















1












$begingroup$


Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,




  • for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.


  • for all $nin mathbb{Z}^+$
    begin{equation}
    int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
    end{equation}


  • and for all $gamma >0$,
    begin{equation}
    int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
    end{equation}

    EDIT:
    Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
    begin{equation}
    lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
    end{equation}











share|cite|improve this question











$endgroup$












  • $begingroup$
    yes, I forgot to write that
    $endgroup$
    – Mani
    Jan 8 at 20:30










  • $begingroup$
    This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
    $endgroup$
    – Mani
    Jan 8 at 22:06










  • $begingroup$
    Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
    $endgroup$
    – Mani
    Jan 8 at 22:17














1












1








1


1



$begingroup$


Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,




  • for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.


  • for all $nin mathbb{Z}^+$
    begin{equation}
    int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
    end{equation}


  • and for all $gamma >0$,
    begin{equation}
    int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
    end{equation}

    EDIT:
    Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
    begin{equation}
    lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
    end{equation}











share|cite|improve this question











$endgroup$




Let ${({varphi}_{n}})_{n=1}^{infty}$ an Approximate Identity in Schwartz Space. Then,




  • for all $nin mathbb{Z}^+$ and for all $xin mathbb{R}$, $ varphi_n(x)ge 0$.


  • for all $nin mathbb{Z}^+$
    begin{equation}
    int _{ {mathbb{R} } }^{ }{ varphi _{ n }(x)dx } = 1,
    end{equation}


  • and for all $gamma >0$,
    begin{equation}
    int _{ left| x right| >gamma }^{ }{ varphi _{ n }(x)dx } {xrightarrow[ nlongrightarrow infty ]{}} 0.
    end{equation}

    EDIT:
    Let $alpha in mathbb{Z}^+$. Is it true or not the following statement?
    begin{equation}
    lim _{ nlongrightarrow infty }{ int _{ mathbb{R} }^{ }{ { left| y right| }^{ alpha }left| { varphi }_{ n }left( y right) right| } } dy=0.
    end{equation}








convolution schwartz-space approximate-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Stephen Montgomery-Smith

17.7k12247




17.7k12247










asked Jan 8 at 19:45









ManiMani

52




52












  • $begingroup$
    yes, I forgot to write that
    $endgroup$
    – Mani
    Jan 8 at 20:30










  • $begingroup$
    This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
    $endgroup$
    – Mani
    Jan 8 at 22:06










  • $begingroup$
    Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
    $endgroup$
    – Mani
    Jan 8 at 22:17


















  • $begingroup$
    yes, I forgot to write that
    $endgroup$
    – Mani
    Jan 8 at 20:30










  • $begingroup$
    This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
    $endgroup$
    – Mani
    Jan 8 at 22:06










  • $begingroup$
    Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
    $endgroup$
    – Mani
    Jan 8 at 22:17
















$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30




$begingroup$
yes, I forgot to write that
$endgroup$
– Mani
Jan 8 at 20:30












$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06




$begingroup$
This is a more general question than the last that I made. I've done the proof with the classical examples of approximate identity but I cannot make a formal proof for whatever approximate identity.
$endgroup$
– Mani
Jan 8 at 22:06












$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17




$begingroup$
Oh I didn´t see that, now R is the whole space, I will immediately correct that.Thanks
$endgroup$
– Mani
Jan 8 at 22:17










1 Answer
1






active

oldest

votes


















2












$begingroup$

It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
$$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
It is easily seen to satisfy the first two properties. But
$$ int_{mathbb R} |y|^alpha phi_x(y) , dy
ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
ge n^{-s} n^alpha ,$$

and this diverges if $alpha > s$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066633%2fapproximate-identity-in-schwartz-space%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
    $$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
    It is easily seen to satisfy the first two properties. But
    $$ int_{mathbb R} |y|^alpha phi_x(y) , dy
    ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
    ge n^{-s} n^alpha ,$$

    and this diverges if $alpha > s$.






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
      $$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
      It is easily seen to satisfy the first two properties. But
      $$ int_{mathbb R} |y|^alpha phi_x(y) , dy
      ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
      ge n^{-s} n^alpha ,$$

      and this diverges if $alpha > s$.






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
        $$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
        It is easily seen to satisfy the first two properties. But
        $$ int_{mathbb R} |y|^alpha phi_x(y) , dy
        ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
        ge n^{-s} n^alpha ,$$

        and this diverges if $alpha > s$.






        share|cite|improve this answer











        $endgroup$



        It is false. Let $psi:mathbb R to [0,infty)$ be a smooth function supported on $[-1,1]$ such that $int_{mathbb R} psi = 1$, and suppose $s > 0$. Define
        $$ phi_n(x) = n (1-n^{-s}) psi(nx) + n^{-s} psi(x-n-1) .$$
        It is easily seen to satisfy the first two properties. But
        $$ int_{mathbb R} |y|^alpha phi_x(y) , dy
        ge int_{n}^{n+2} |y|^alpha n^{-s} psi(y-n-1) , dy
        ge n^{-s} n^alpha ,$$

        and this diverges if $alpha > s$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited yesterday

























        answered yesterday









        Stephen Montgomery-SmithStephen Montgomery-Smith

        17.7k12247




        17.7k12247






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066633%2fapproximate-identity-in-schwartz-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?