$SO(n)$ is connected, alternative form
$begingroup$
I have the following exercise:
Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.
I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.
linear-algebra lie-groups
$endgroup$
add a comment |
$begingroup$
I have the following exercise:
Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.
I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.
linear-algebra lie-groups
$endgroup$
1
$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36
$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03
add a comment |
$begingroup$
I have the following exercise:
Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.
I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.
linear-algebra lie-groups
$endgroup$
I have the following exercise:
Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.
I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.
linear-algebra lie-groups
linear-algebra lie-groups
asked Jul 2 '14 at 15:16
andrebantandrebant
12611
12611
1
$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36
$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03
add a comment |
1
$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36
$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03
1
1
$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36
$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36
$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03
$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The matrix
$$
begin{pmatrix}
costheta & -sintheta \
sintheta & costheta \
end{pmatrix}
$$
is in SO($2$) and means rotation.
For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
$$
begin{pmatrix}
1 & 0 & 0 \
0 & costheta_1 & -sintheta_1 \
0 & sintheta_1 & costheta_1 \
end{pmatrix}
begin{pmatrix}
x\
y\
z\
end{pmatrix}
=
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0
end{pmatrix}
$$
This matrix A belongs to SO($3$).
And then similarly (called matrix B):
$$
begin{pmatrix}
costheta_2 & -sintheta_2 & 0\
sintheta_2 & costheta_2 & 0\
0 & 0 & 1\
end{pmatrix}
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0\
end{pmatrix}
=
begin{pmatrix}
sqrt{x^2+y^2+z^2}\
0\
0
end{pmatrix}
$$
So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f854408%2fson-is-connected-alternative-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The matrix
$$
begin{pmatrix}
costheta & -sintheta \
sintheta & costheta \
end{pmatrix}
$$
is in SO($2$) and means rotation.
For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
$$
begin{pmatrix}
1 & 0 & 0 \
0 & costheta_1 & -sintheta_1 \
0 & sintheta_1 & costheta_1 \
end{pmatrix}
begin{pmatrix}
x\
y\
z\
end{pmatrix}
=
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0
end{pmatrix}
$$
This matrix A belongs to SO($3$).
And then similarly (called matrix B):
$$
begin{pmatrix}
costheta_2 & -sintheta_2 & 0\
sintheta_2 & costheta_2 & 0\
0 & 0 & 1\
end{pmatrix}
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0\
end{pmatrix}
=
begin{pmatrix}
sqrt{x^2+y^2+z^2}\
0\
0
end{pmatrix}
$$
So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$
$endgroup$
add a comment |
$begingroup$
The matrix
$$
begin{pmatrix}
costheta & -sintheta \
sintheta & costheta \
end{pmatrix}
$$
is in SO($2$) and means rotation.
For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
$$
begin{pmatrix}
1 & 0 & 0 \
0 & costheta_1 & -sintheta_1 \
0 & sintheta_1 & costheta_1 \
end{pmatrix}
begin{pmatrix}
x\
y\
z\
end{pmatrix}
=
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0
end{pmatrix}
$$
This matrix A belongs to SO($3$).
And then similarly (called matrix B):
$$
begin{pmatrix}
costheta_2 & -sintheta_2 & 0\
sintheta_2 & costheta_2 & 0\
0 & 0 & 1\
end{pmatrix}
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0\
end{pmatrix}
=
begin{pmatrix}
sqrt{x^2+y^2+z^2}\
0\
0
end{pmatrix}
$$
So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$
$endgroup$
add a comment |
$begingroup$
The matrix
$$
begin{pmatrix}
costheta & -sintheta \
sintheta & costheta \
end{pmatrix}
$$
is in SO($2$) and means rotation.
For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
$$
begin{pmatrix}
1 & 0 & 0 \
0 & costheta_1 & -sintheta_1 \
0 & sintheta_1 & costheta_1 \
end{pmatrix}
begin{pmatrix}
x\
y\
z\
end{pmatrix}
=
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0
end{pmatrix}
$$
This matrix A belongs to SO($3$).
And then similarly (called matrix B):
$$
begin{pmatrix}
costheta_2 & -sintheta_2 & 0\
sintheta_2 & costheta_2 & 0\
0 & 0 & 1\
end{pmatrix}
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0\
end{pmatrix}
=
begin{pmatrix}
sqrt{x^2+y^2+z^2}\
0\
0
end{pmatrix}
$$
So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$
$endgroup$
The matrix
$$
begin{pmatrix}
costheta & -sintheta \
sintheta & costheta \
end{pmatrix}
$$
is in SO($2$) and means rotation.
For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
$$
begin{pmatrix}
1 & 0 & 0 \
0 & costheta_1 & -sintheta_1 \
0 & sintheta_1 & costheta_1 \
end{pmatrix}
begin{pmatrix}
x\
y\
z\
end{pmatrix}
=
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0
end{pmatrix}
$$
This matrix A belongs to SO($3$).
And then similarly (called matrix B):
$$
begin{pmatrix}
costheta_2 & -sintheta_2 & 0\
sintheta_2 & costheta_2 & 0\
0 & 0 & 1\
end{pmatrix}
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0\
end{pmatrix}
=
begin{pmatrix}
sqrt{x^2+y^2+z^2}\
0\
0
end{pmatrix}
$$
So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$
edited Jan 23 at 12:33
answered Jan 23 at 11:59
ZWJZWJ
35
35
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f854408%2fson-is-connected-alternative-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36
$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03