$SO(n)$ is connected, alternative form












1












$begingroup$


I have the following exercise:




Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.




I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Rotate in the plane spanned by $e_1$ and $v$.
    $endgroup$
    – daw
    Jul 2 '14 at 18:36










  • $begingroup$
    Yes, but how can I express this rotation?
    $endgroup$
    – andrebant
    Jul 2 '14 at 21:03
















1












$begingroup$


I have the following exercise:




Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.




I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Rotate in the plane spanned by $e_1$ and $v$.
    $endgroup$
    – daw
    Jul 2 '14 at 18:36










  • $begingroup$
    Yes, but how can I express this rotation?
    $endgroup$
    – andrebant
    Jul 2 '14 at 21:03














1












1








1


0



$begingroup$


I have the following exercise:




Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.




I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.










share|cite|improve this question









$endgroup$




I have the following exercise:




Show that $SO(n)$ is connected, using the following outline: For the case $n = 1$, there is nothing to show, since a $1times 1$ matrix with determinant one must be $[1]$. Assume, then, that $n geq 2$. Let $e_1$ denote the unit vector with entries $(1,0,ldots, 0)$ in $mathbb R^n$. Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Now, show that any element $R$ of $SO(n)$ can be connected to a block-diagonal matrix of the form
begin{pmatrix}
1 &\&R_1
end{pmatrix}
with $R_1in SO(n- 1)$ and proceed by induction.




I have troubles only with the first part, i.e., Given any unit vector $vinmathbb R^n$, show that there exists a continuous path $R(t)$ in $SO(n)$ with $R(O) = I$ and $R(1)v = e_1$. Please help me, thank you.







linear-algebra lie-groups






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jul 2 '14 at 15:16









andrebantandrebant

12611




12611








  • 1




    $begingroup$
    Rotate in the plane spanned by $e_1$ and $v$.
    $endgroup$
    – daw
    Jul 2 '14 at 18:36










  • $begingroup$
    Yes, but how can I express this rotation?
    $endgroup$
    – andrebant
    Jul 2 '14 at 21:03














  • 1




    $begingroup$
    Rotate in the plane spanned by $e_1$ and $v$.
    $endgroup$
    – daw
    Jul 2 '14 at 18:36










  • $begingroup$
    Yes, but how can I express this rotation?
    $endgroup$
    – andrebant
    Jul 2 '14 at 21:03








1




1




$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36




$begingroup$
Rotate in the plane spanned by $e_1$ and $v$.
$endgroup$
– daw
Jul 2 '14 at 18:36












$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03




$begingroup$
Yes, but how can I express this rotation?
$endgroup$
– andrebant
Jul 2 '14 at 21:03










1 Answer
1






active

oldest

votes


















0












$begingroup$

The matrix
$$
begin{pmatrix}
costheta & -sintheta \
sintheta & costheta \
end{pmatrix}
$$

is in SO($2$) and means rotation.



For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
$$
begin{pmatrix}
1 & 0 & 0 \
0 & costheta_1 & -sintheta_1 \
0 & sintheta_1 & costheta_1 \
end{pmatrix}
begin{pmatrix}
x\
y\
z\
end{pmatrix}
=
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0
end{pmatrix}
$$

This matrix A belongs to SO($3$).



And then similarly (called matrix B):
$$
begin{pmatrix}
costheta_2 & -sintheta_2 & 0\
sintheta_2 & costheta_2 & 0\
0 & 0 & 1\
end{pmatrix}
begin{pmatrix}
x\
sqrt{y^2+z^2}\
0\
end{pmatrix}
=
begin{pmatrix}
sqrt{x^2+y^2+z^2}\
0\
0
end{pmatrix}
$$



So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f854408%2fson-is-connected-alternative-form%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    The matrix
    $$
    begin{pmatrix}
    costheta & -sintheta \
    sintheta & costheta \
    end{pmatrix}
    $$

    is in SO($2$) and means rotation.



    For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
    $$
    begin{pmatrix}
    1 & 0 & 0 \
    0 & costheta_1 & -sintheta_1 \
    0 & sintheta_1 & costheta_1 \
    end{pmatrix}
    begin{pmatrix}
    x\
    y\
    z\
    end{pmatrix}
    =
    begin{pmatrix}
    x\
    sqrt{y^2+z^2}\
    0
    end{pmatrix}
    $$

    This matrix A belongs to SO($3$).



    And then similarly (called matrix B):
    $$
    begin{pmatrix}
    costheta_2 & -sintheta_2 & 0\
    sintheta_2 & costheta_2 & 0\
    0 & 0 & 1\
    end{pmatrix}
    begin{pmatrix}
    x\
    sqrt{y^2+z^2}\
    0\
    end{pmatrix}
    =
    begin{pmatrix}
    sqrt{x^2+y^2+z^2}\
    0\
    0
    end{pmatrix}
    $$



    So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      The matrix
      $$
      begin{pmatrix}
      costheta & -sintheta \
      sintheta & costheta \
      end{pmatrix}
      $$

      is in SO($2$) and means rotation.



      For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
      $$
      begin{pmatrix}
      1 & 0 & 0 \
      0 & costheta_1 & -sintheta_1 \
      0 & sintheta_1 & costheta_1 \
      end{pmatrix}
      begin{pmatrix}
      x\
      y\
      z\
      end{pmatrix}
      =
      begin{pmatrix}
      x\
      sqrt{y^2+z^2}\
      0
      end{pmatrix}
      $$

      This matrix A belongs to SO($3$).



      And then similarly (called matrix B):
      $$
      begin{pmatrix}
      costheta_2 & -sintheta_2 & 0\
      sintheta_2 & costheta_2 & 0\
      0 & 0 & 1\
      end{pmatrix}
      begin{pmatrix}
      x\
      sqrt{y^2+z^2}\
      0\
      end{pmatrix}
      =
      begin{pmatrix}
      sqrt{x^2+y^2+z^2}\
      0\
      0
      end{pmatrix}
      $$



      So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        The matrix
        $$
        begin{pmatrix}
        costheta & -sintheta \
        sintheta & costheta \
        end{pmatrix}
        $$

        is in SO($2$) and means rotation.



        For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
        $$
        begin{pmatrix}
        1 & 0 & 0 \
        0 & costheta_1 & -sintheta_1 \
        0 & sintheta_1 & costheta_1 \
        end{pmatrix}
        begin{pmatrix}
        x\
        y\
        z\
        end{pmatrix}
        =
        begin{pmatrix}
        x\
        sqrt{y^2+z^2}\
        0
        end{pmatrix}
        $$

        This matrix A belongs to SO($3$).



        And then similarly (called matrix B):
        $$
        begin{pmatrix}
        costheta_2 & -sintheta_2 & 0\
        sintheta_2 & costheta_2 & 0\
        0 & 0 & 1\
        end{pmatrix}
        begin{pmatrix}
        x\
        sqrt{y^2+z^2}\
        0\
        end{pmatrix}
        =
        begin{pmatrix}
        sqrt{x^2+y^2+z^2}\
        0\
        0
        end{pmatrix}
        $$



        So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$






        share|cite|improve this answer











        $endgroup$



        The matrix
        $$
        begin{pmatrix}
        costheta & -sintheta \
        sintheta & costheta \
        end{pmatrix}
        $$

        is in SO($2$) and means rotation.



        For $3$-dimension, you first choose $theta_1$ to rotate $(x,y,z)'$ to $(x,sqrt {y^2+z^2},0)'$ continously:
        $$
        begin{pmatrix}
        1 & 0 & 0 \
        0 & costheta_1 & -sintheta_1 \
        0 & sintheta_1 & costheta_1 \
        end{pmatrix}
        begin{pmatrix}
        x\
        y\
        z\
        end{pmatrix}
        =
        begin{pmatrix}
        x\
        sqrt{y^2+z^2}\
        0
        end{pmatrix}
        $$

        This matrix A belongs to SO($3$).



        And then similarly (called matrix B):
        $$
        begin{pmatrix}
        costheta_2 & -sintheta_2 & 0\
        sintheta_2 & costheta_2 & 0\
        0 & 0 & 1\
        end{pmatrix}
        begin{pmatrix}
        x\
        sqrt{y^2+z^2}\
        0\
        end{pmatrix}
        =
        begin{pmatrix}
        sqrt{x^2+y^2+z^2}\
        0\
        0
        end{pmatrix}
        $$



        So, $R(0)=I$, $R(1/2)=A$, $R(1)=BA$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 23 at 12:33

























        answered Jan 23 at 11:59









        ZWJZWJ

        35




        35






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f854408%2fson-is-connected-alternative-form%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            What does “Dominus providebit” mean?

            Antonio Litta Visconti Arese