Compute $lim_{n to infty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}$
$begingroup$
Compute $lim_{n to infty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}$
I did: $lim_{nto infty}(1+frac{1}{frac{n+1}{n-1}})^{frac{n+1}{n-1}}=e$.
Why is this incorrect?
Thank you for your help.
limits
$endgroup$
add a comment |
$begingroup$
Compute $lim_{n to infty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}$
I did: $lim_{nto infty}(1+frac{1}{frac{n+1}{n-1}})^{frac{n+1}{n-1}}=e$.
Why is this incorrect?
Thank you for your help.
limits
$endgroup$
2
$begingroup$
Hint: What is the limit of $(n+1)/(n-1)$ ?
$endgroup$
– Martin R
Jan 23 at 12:40
2
$begingroup$
Because $(n-1)/(n+1) notto +infty$, and you cannot use that significant well-known limit about $mathrm e$.
$endgroup$
– xbh
Jan 23 at 12:41
$begingroup$
limit of $(n+1)/(n-1)=1$, thank you!
$endgroup$
– J.Doe
Jan 23 at 12:41
add a comment |
$begingroup$
Compute $lim_{n to infty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}$
I did: $lim_{nto infty}(1+frac{1}{frac{n+1}{n-1}})^{frac{n+1}{n-1}}=e$.
Why is this incorrect?
Thank you for your help.
limits
$endgroup$
Compute $lim_{n to infty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}$
I did: $lim_{nto infty}(1+frac{1}{frac{n+1}{n-1}})^{frac{n+1}{n-1}}=e$.
Why is this incorrect?
Thank you for your help.
limits
limits
edited Jan 23 at 12:52
amWhy
1
1
asked Jan 23 at 12:37
J.DoeJ.Doe
899
899
2
$begingroup$
Hint: What is the limit of $(n+1)/(n-1)$ ?
$endgroup$
– Martin R
Jan 23 at 12:40
2
$begingroup$
Because $(n-1)/(n+1) notto +infty$, and you cannot use that significant well-known limit about $mathrm e$.
$endgroup$
– xbh
Jan 23 at 12:41
$begingroup$
limit of $(n+1)/(n-1)=1$, thank you!
$endgroup$
– J.Doe
Jan 23 at 12:41
add a comment |
2
$begingroup$
Hint: What is the limit of $(n+1)/(n-1)$ ?
$endgroup$
– Martin R
Jan 23 at 12:40
2
$begingroup$
Because $(n-1)/(n+1) notto +infty$, and you cannot use that significant well-known limit about $mathrm e$.
$endgroup$
– xbh
Jan 23 at 12:41
$begingroup$
limit of $(n+1)/(n-1)=1$, thank you!
$endgroup$
– J.Doe
Jan 23 at 12:41
2
2
$begingroup$
Hint: What is the limit of $(n+1)/(n-1)$ ?
$endgroup$
– Martin R
Jan 23 at 12:40
$begingroup$
Hint: What is the limit of $(n+1)/(n-1)$ ?
$endgroup$
– Martin R
Jan 23 at 12:40
2
2
$begingroup$
Because $(n-1)/(n+1) notto +infty$, and you cannot use that significant well-known limit about $mathrm e$.
$endgroup$
– xbh
Jan 23 at 12:41
$begingroup$
Because $(n-1)/(n+1) notto +infty$, and you cannot use that significant well-known limit about $mathrm e$.
$endgroup$
– xbh
Jan 23 at 12:41
$begingroup$
limit of $(n+1)/(n-1)=1$, thank you!
$endgroup$
– J.Doe
Jan 23 at 12:41
$begingroup$
limit of $(n+1)/(n-1)=1$, thank you!
$endgroup$
– J.Doe
Jan 23 at 12:41
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I hope you solved the problem. Here is a fact that might help you.
Put, $t=frac{n+1}{n-1}$. Here as $nto infty$, $t=frac{n+1}{n-1}=frac{1+frac{1}{n}}{1-frac{1}{n}}to 1$. Putting all these we get, $$lim_{ntoinfty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}= lim_{tto 1}(1+frac{1}{t})^t=2$$
$endgroup$
add a comment |
$begingroup$
Since $,displaystylelim_{ntoinfty}frac{n+1}{n-1} neq infty,$ you can't apply that property.
But, you can rewrite it as
$$1+frac{n-1}{n+1} = 2left(1-frac{1}{left(n+1right)}right)$$
so, the limit is
$$ lim_{ntoinfty},2^{frac{n+1}{n-1}}cdotleft[left(1+frac{1}{-left(n+1right)}right)^{-left(n+1right)}right]^{frac{-1}{n-1}} = 2cdot e^{lim_{ntoinfty}frac{-1}{n-1}} = 2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084414%2fcompute-lim-n-to-infty1-fracn-1n1-fracn1n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I hope you solved the problem. Here is a fact that might help you.
Put, $t=frac{n+1}{n-1}$. Here as $nto infty$, $t=frac{n+1}{n-1}=frac{1+frac{1}{n}}{1-frac{1}{n}}to 1$. Putting all these we get, $$lim_{ntoinfty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}= lim_{tto 1}(1+frac{1}{t})^t=2$$
$endgroup$
add a comment |
$begingroup$
I hope you solved the problem. Here is a fact that might help you.
Put, $t=frac{n+1}{n-1}$. Here as $nto infty$, $t=frac{n+1}{n-1}=frac{1+frac{1}{n}}{1-frac{1}{n}}to 1$. Putting all these we get, $$lim_{ntoinfty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}= lim_{tto 1}(1+frac{1}{t})^t=2$$
$endgroup$
add a comment |
$begingroup$
I hope you solved the problem. Here is a fact that might help you.
Put, $t=frac{n+1}{n-1}$. Here as $nto infty$, $t=frac{n+1}{n-1}=frac{1+frac{1}{n}}{1-frac{1}{n}}to 1$. Putting all these we get, $$lim_{ntoinfty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}= lim_{tto 1}(1+frac{1}{t})^t=2$$
$endgroup$
I hope you solved the problem. Here is a fact that might help you.
Put, $t=frac{n+1}{n-1}$. Here as $nto infty$, $t=frac{n+1}{n-1}=frac{1+frac{1}{n}}{1-frac{1}{n}}to 1$. Putting all these we get, $$lim_{ntoinfty}(1+frac{n-1}{n+1})^{frac{n+1}{n-1}}= lim_{tto 1}(1+frac{1}{t})^t=2$$
answered Jan 23 at 12:50
Sujit BhattacharyyaSujit Bhattacharyya
1,372519
1,372519
add a comment |
add a comment |
$begingroup$
Since $,displaystylelim_{ntoinfty}frac{n+1}{n-1} neq infty,$ you can't apply that property.
But, you can rewrite it as
$$1+frac{n-1}{n+1} = 2left(1-frac{1}{left(n+1right)}right)$$
so, the limit is
$$ lim_{ntoinfty},2^{frac{n+1}{n-1}}cdotleft[left(1+frac{1}{-left(n+1right)}right)^{-left(n+1right)}right]^{frac{-1}{n-1}} = 2cdot e^{lim_{ntoinfty}frac{-1}{n-1}} = 2$$
$endgroup$
add a comment |
$begingroup$
Since $,displaystylelim_{ntoinfty}frac{n+1}{n-1} neq infty,$ you can't apply that property.
But, you can rewrite it as
$$1+frac{n-1}{n+1} = 2left(1-frac{1}{left(n+1right)}right)$$
so, the limit is
$$ lim_{ntoinfty},2^{frac{n+1}{n-1}}cdotleft[left(1+frac{1}{-left(n+1right)}right)^{-left(n+1right)}right]^{frac{-1}{n-1}} = 2cdot e^{lim_{ntoinfty}frac{-1}{n-1}} = 2$$
$endgroup$
add a comment |
$begingroup$
Since $,displaystylelim_{ntoinfty}frac{n+1}{n-1} neq infty,$ you can't apply that property.
But, you can rewrite it as
$$1+frac{n-1}{n+1} = 2left(1-frac{1}{left(n+1right)}right)$$
so, the limit is
$$ lim_{ntoinfty},2^{frac{n+1}{n-1}}cdotleft[left(1+frac{1}{-left(n+1right)}right)^{-left(n+1right)}right]^{frac{-1}{n-1}} = 2cdot e^{lim_{ntoinfty}frac{-1}{n-1}} = 2$$
$endgroup$
Since $,displaystylelim_{ntoinfty}frac{n+1}{n-1} neq infty,$ you can't apply that property.
But, you can rewrite it as
$$1+frac{n-1}{n+1} = 2left(1-frac{1}{left(n+1right)}right)$$
so, the limit is
$$ lim_{ntoinfty},2^{frac{n+1}{n-1}}cdotleft[left(1+frac{1}{-left(n+1right)}right)^{-left(n+1right)}right]^{frac{-1}{n-1}} = 2cdot e^{lim_{ntoinfty}frac{-1}{n-1}} = 2$$
answered Jan 23 at 13:09
CarlIOCarlIO
957
957
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084414%2fcompute-lim-n-to-infty1-fracn-1n1-fracn1n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Hint: What is the limit of $(n+1)/(n-1)$ ?
$endgroup$
– Martin R
Jan 23 at 12:40
2
$begingroup$
Because $(n-1)/(n+1) notto +infty$, and you cannot use that significant well-known limit about $mathrm e$.
$endgroup$
– xbh
Jan 23 at 12:41
$begingroup$
limit of $(n+1)/(n-1)=1$, thank you!
$endgroup$
– J.Doe
Jan 23 at 12:41