Prove upper bound on derivative
$begingroup$
Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that
a) if $I=[-a, a]$, then
$$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$
- if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$
c) Constants $2$ and $sqrt{2}$ from b) cannot be improved
d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and
$$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$
Solutions for b) and c) were given here and here.
d) was solved here.
Now I am trying to solve a):
Using Taylor's expansion we have
$$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
for some $xi_1, xi_2$. From this
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$
How to eliminate that $|x|cdot M_2$?
real-analysis derivatives taylor-expansion
$endgroup$
add a comment |
$begingroup$
Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that
a) if $I=[-a, a]$, then
$$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$
- if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$
c) Constants $2$ and $sqrt{2}$ from b) cannot be improved
d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and
$$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$
Solutions for b) and c) were given here and here.
d) was solved here.
Now I am trying to solve a):
Using Taylor's expansion we have
$$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
for some $xi_1, xi_2$. From this
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$
How to eliminate that $|x|cdot M_2$?
real-analysis derivatives taylor-expansion
$endgroup$
add a comment |
$begingroup$
Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that
a) if $I=[-a, a]$, then
$$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$
- if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$
c) Constants $2$ and $sqrt{2}$ from b) cannot be improved
d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and
$$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$
Solutions for b) and c) were given here and here.
d) was solved here.
Now I am trying to solve a):
Using Taylor's expansion we have
$$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
for some $xi_1, xi_2$. From this
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$
How to eliminate that $|x|cdot M_2$?
real-analysis derivatives taylor-expansion
$endgroup$
Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that
a) if $I=[-a, a]$, then
$$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$
- if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$
c) Constants $2$ and $sqrt{2}$ from b) cannot be improved
d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and
$$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$
Solutions for b) and c) were given here and here.
d) was solved here.
Now I am trying to solve a):
Using Taylor's expansion we have
$$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
for some $xi_1, xi_2$. From this
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$
How to eliminate that $|x|cdot M_2$?
real-analysis derivatives taylor-expansion
real-analysis derivatives taylor-expansion
asked Mar 11 '18 at 6:37
B. BekmaganbetovB. Bekmaganbetov
214
214
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Don't write $f'(x)$ as:
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
but simply as:
$$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$
and so it follows that:
$$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$
that is the claim.
$endgroup$
add a comment |
$begingroup$
Taylor expansion about $x=x_0$ is given by
$$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
So,
$$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
and
$$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
Subtracting $(2)$ from $(1)$, we get
$$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
$$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
Using triangle inequality, we have
$$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
$$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
Since $x_0$ was arbitrary, so
$$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$
$endgroup$
$begingroup$
(1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
$endgroup$
– B. Bekmaganbetov
Mar 11 '18 at 8:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2686081%2fprove-upper-bound-on-derivative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Don't write $f'(x)$ as:
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
but simply as:
$$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$
and so it follows that:
$$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$
that is the claim.
$endgroup$
add a comment |
$begingroup$
Don't write $f'(x)$ as:
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
but simply as:
$$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$
and so it follows that:
$$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$
that is the claim.
$endgroup$
add a comment |
$begingroup$
Don't write $f'(x)$ as:
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
but simply as:
$$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$
and so it follows that:
$$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$
that is the claim.
$endgroup$
Don't write $f'(x)$ as:
$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$
but simply as:
$$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$
and so it follows that:
$$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$
that is the claim.
answered Jan 24 at 20:34
NamelessNameless
788
788
add a comment |
add a comment |
$begingroup$
Taylor expansion about $x=x_0$ is given by
$$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
So,
$$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
and
$$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
Subtracting $(2)$ from $(1)$, we get
$$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
$$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
Using triangle inequality, we have
$$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
$$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
Since $x_0$ was arbitrary, so
$$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$
$endgroup$
$begingroup$
(1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
$endgroup$
– B. Bekmaganbetov
Mar 11 '18 at 8:35
add a comment |
$begingroup$
Taylor expansion about $x=x_0$ is given by
$$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
So,
$$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
and
$$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
Subtracting $(2)$ from $(1)$, we get
$$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
$$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
Using triangle inequality, we have
$$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
$$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
Since $x_0$ was arbitrary, so
$$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$
$endgroup$
$begingroup$
(1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
$endgroup$
– B. Bekmaganbetov
Mar 11 '18 at 8:35
add a comment |
$begingroup$
Taylor expansion about $x=x_0$ is given by
$$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
So,
$$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
and
$$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
Subtracting $(2)$ from $(1)$, we get
$$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
$$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
Using triangle inequality, we have
$$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
$$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
Since $x_0$ was arbitrary, so
$$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$
$endgroup$
Taylor expansion about $x=x_0$ is given by
$$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
So,
$$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
and
$$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
Subtracting $(2)$ from $(1)$, we get
$$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
$$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
Using triangle inequality, we have
$$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
$$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
Since $x_0$ was arbitrary, so
$$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$
answered Mar 11 '18 at 7:48
GoldyGoldy
43414
43414
$begingroup$
(1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
$endgroup$
– B. Bekmaganbetov
Mar 11 '18 at 8:35
add a comment |
$begingroup$
(1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
$endgroup$
– B. Bekmaganbetov
Mar 11 '18 at 8:35
$begingroup$
(1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
$endgroup$
– B. Bekmaganbetov
Mar 11 '18 at 8:35
$begingroup$
(1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
$endgroup$
– B. Bekmaganbetov
Mar 11 '18 at 8:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2686081%2fprove-upper-bound-on-derivative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown