Prove upper bound on derivative












0












$begingroup$


Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that



a) if $I=[-a, a]$, then
$$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$




  1. if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$


c) Constants $2$ and $sqrt{2}$ from b) cannot be improved



d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and



$$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$



Solutions for b) and c) were given here and here.



d) was solved here.



Now I am trying to solve a):



Using Taylor's expansion we have



$$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
for some $xi_1, xi_2$. From this



$$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$



How to eliminate that $|x|cdot M_2$?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that



    a) if $I=[-a, a]$, then
    $$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
    b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$




    1. if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$


    c) Constants $2$ and $sqrt{2}$ from b) cannot be improved



    d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and



    $$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$



    Solutions for b) and c) were given here and here.



    d) was solved here.



    Now I am trying to solve a):



    Using Taylor's expansion we have



    $$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
    f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
    for some $xi_1, xi_2$. From this



    $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



    Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$



    How to eliminate that $|x|cdot M_2$?










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      0



      $begingroup$


      Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that



      a) if $I=[-a, a]$, then
      $$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
      b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$




      1. if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$


      c) Constants $2$ and $sqrt{2}$ from b) cannot be improved



      d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and



      $$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$



      Solutions for b) and c) were given here and here.



      d) was solved here.



      Now I am trying to solve a):



      Using Taylor's expansion we have



      $$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
      f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
      for some $xi_1, xi_2$. From this



      $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



      Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$



      How to eliminate that $|x|cdot M_2$?










      share|cite|improve this question









      $endgroup$




      Let $f$ be twice differentiable function on interval $I$. Let $M_0=sup_{xin I}|f(x)|, M_1=sup_{xin I}|f'(x)|, M_2=sup_{xin I}|f''(x)|$. Show that



      a) if $I=[-a, a]$, then
      $$|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2$$
      b) 1. if length of $I$ is not less than $2sqrt{M_0/M_2}$, then $M_1leqslant 2sqrt{M_0M_2}$




      1. if $I=mathbb{R}$, then $M_1leqslant sqrt{2M_0M_2}$


      c) Constants $2$ and $sqrt{2}$ from b) cannot be improved



      d) if $f$ is $p$ times differentiable on $mathbb{R}$ and $M_0$ and $M_p=sup_{xinmathbb{R}}|f^{(p)}(x)|$ are finite, then for $1leqslant kleqslant p$ $M_k=sup_{xinmathbb{R}}|f^{(k)}(x)|$ are finite and



      $$M_kleqslant2^{k(p-k)/2}M_0^{1-k/p}M_p^{k/p}$$



      Solutions for b) and c) were given here and here.



      d) was solved here.



      Now I am trying to solve a):



      Using Taylor's expansion we have



      $$f(a)=f(x)+f'(x)(a-x)+frac{1}{2}f''(xi_1)(a-x)^2\
      f(-a)=f(x)+f'(x)(-a-x)+frac{1}{2}f''(xi_2)(-a-x)^2,$$
      for some $xi_1, xi_2$. From this



      $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



      Using triangle inequality gives $|f'(x)|leqslant frac{M_0}{a}+frac{x^2+a^2}{2a}M_2+|x|cdot M_2$



      How to eliminate that $|x|cdot M_2$?







      real-analysis derivatives taylor-expansion






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 11 '18 at 6:37









      B. BekmaganbetovB. Bekmaganbetov

      214




      214






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Don't write $f'(x)$ as:



          $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



          but simply as:



          $$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$



          and so it follows that:



          $$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$



          that is the claim.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Taylor expansion about $x=x_0$ is given by
            $$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
            So,
            $$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
            and
            $$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
            Subtracting $(2)$ from $(1)$, we get
            $$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
            $$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
            Using triangle inequality, we have
            $$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
            $$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
            Since $x_0$ was arbitrary, so
            $$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              (1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
              $endgroup$
              – B. Bekmaganbetov
              Mar 11 '18 at 8:35











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2686081%2fprove-upper-bound-on-derivative%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Don't write $f'(x)$ as:



            $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



            but simply as:



            $$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$



            and so it follows that:



            $$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$



            that is the claim.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Don't write $f'(x)$ as:



              $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



              but simply as:



              $$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$



              and so it follows that:



              $$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$



              that is the claim.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Don't write $f'(x)$ as:



                $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



                but simply as:



                $$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$



                and so it follows that:



                $$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$



                that is the claim.






                share|cite|improve this answer









                $endgroup$



                Don't write $f'(x)$ as:



                $$f'(x)=frac{f(a)-f(-a)}{2a}+frac{1}{4a}Bigl((x^2+a^2)(f''(xi_1)-f''(xi_2))-2ax(f''(xi_1)+f''(xi_2))Bigr)$$



                but simply as:



                $$f'(x)=frac{f(a)-f(-a)}{2a}-frac{1}{4a}f''(xi_1)(a-x_0)^2+frac{1}{4a}f''(xi_2)(a+x_0)^2$$



                and so it follows that:



                $$|f'(x)|leq frac{M_0}{a}+frac{M_2}{4a}(a-x_0)^2+frac{M_2}{4a}(a+x_0)^2=frac{M_0}{a}+frac{M_2}{2a}(a^2+x_0^2)$$



                that is the claim.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 24 at 20:34









                NamelessNameless

                788




                788























                    0












                    $begingroup$

                    Taylor expansion about $x=x_0$ is given by
                    $$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
                    So,
                    $$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
                    and
                    $$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
                    Subtracting $(2)$ from $(1)$, we get
                    $$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
                    $$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
                    Using triangle inequality, we have
                    $$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
                    $$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
                    Since $x_0$ was arbitrary, so
                    $$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      (1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
                      $endgroup$
                      – B. Bekmaganbetov
                      Mar 11 '18 at 8:35
















                    0












                    $begingroup$

                    Taylor expansion about $x=x_0$ is given by
                    $$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
                    So,
                    $$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
                    and
                    $$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
                    Subtracting $(2)$ from $(1)$, we get
                    $$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
                    $$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
                    Using triangle inequality, we have
                    $$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
                    $$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
                    Since $x_0$ was arbitrary, so
                    $$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      (1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
                      $endgroup$
                      – B. Bekmaganbetov
                      Mar 11 '18 at 8:35














                    0












                    0








                    0





                    $begingroup$

                    Taylor expansion about $x=x_0$ is given by
                    $$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
                    So,
                    $$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
                    and
                    $$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
                    Subtracting $(2)$ from $(1)$, we get
                    $$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
                    $$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
                    Using triangle inequality, we have
                    $$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
                    $$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
                    Since $x_0$ was arbitrary, so
                    $$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$






                    share|cite|improve this answer









                    $endgroup$



                    Taylor expansion about $x=x_0$ is given by
                    $$f(x)=f(x_0)+f'(x_0)(x-x_0)+frac{f''(x_0)}{2}(x-x_0)^2.$$
                    So,
                    $$f(a)=f(x_0)+f'(x_0)(a-x_0)+frac{f''(x_0)}{2}(a-x_0)^2,~~~~~~~~~~~~~~~(1)$$
                    and
                    $$f(-a)=f(x_0)+f'(x_0)(-a-x_0)+frac{f''(x_0)}{2}(-a-x_0)^2~~~~~~~~~~~~~~~(2)$$
                    Subtracting $(2)$ from $(1)$, we get
                    $$f(a)-f(-a)=2a~f'(x_0)+frac{1}{2}(-4ax_0)f''(x_0)$$
                    $$implies f'(x_0)=frac{f(a)-f(-a)}{2a}+frac{1}{2a}(2ax_0)f''(x_0).$$
                    Using triangle inequality, we have
                    $$|f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(2ax_0)M_2$$
                    $$implies |f'(x_0)|leqfrac{M_0}{a}+frac{1}{2a}(x_0^2+a^2)M_2~~~(because (x_0-a)^2geq 0).$$
                    Since $x_0$ was arbitrary, so
                    $$|f'(x)|leqfrac{M_0}{a}+frac{1}{2a}(x^2+a^2)M_2.$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 11 '18 at 7:48









                    GoldyGoldy

                    43414




                    43414












                    • $begingroup$
                      (1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
                      $endgroup$
                      – B. Bekmaganbetov
                      Mar 11 '18 at 8:35


















                    • $begingroup$
                      (1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
                      $endgroup$
                      – B. Bekmaganbetov
                      Mar 11 '18 at 8:35
















                    $begingroup$
                    (1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
                    $endgroup$
                    – B. Bekmaganbetov
                    Mar 11 '18 at 8:35




                    $begingroup$
                    (1) and (2) are incorrect. See en.wikipedia.org/wiki/Taylor's_theorem. You cannot write $f''(x_0)$ because the point lies between $x_0$ and $a$ or $-a$, but it is not $x_0$. Consider $f(x)=x^3$ on $[-1, 1]$.
                    $endgroup$
                    – B. Bekmaganbetov
                    Mar 11 '18 at 8:35


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2686081%2fprove-upper-bound-on-derivative%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    Dobbiaco