Intermediate Value Theorem proof Question












1












$begingroup$


There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.




Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$




Proof:



$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$



$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$



$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$



$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$



$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$



$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$



$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$



$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.



I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
    $endgroup$
    – rubikscube09
    Jan 25 at 21:35










  • $begingroup$
    I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
    $endgroup$
    – Carsten S
    Jan 26 at 14:19










  • $begingroup$
    The original proof was in German and there was more text involved...
    $endgroup$
    – RM777
    Jan 26 at 16:29
















1












$begingroup$


There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.




Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$




Proof:



$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$



$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$



$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$



$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$



$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$



$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$



$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$



$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.



I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
    $endgroup$
    – rubikscube09
    Jan 25 at 21:35










  • $begingroup$
    I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
    $endgroup$
    – Carsten S
    Jan 26 at 14:19










  • $begingroup$
    The original proof was in German and there was more text involved...
    $endgroup$
    – RM777
    Jan 26 at 16:29














1












1








1





$begingroup$


There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.




Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$




Proof:



$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$



$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$



$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$



$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$



$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$



$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$



$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$



$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.



I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?










share|cite|improve this question











$endgroup$




There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.




Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$




Proof:



$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$



$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$



$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$



$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$



$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$



$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$



$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$



$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.



I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 22:05









Bernard

122k741116




122k741116










asked Jan 25 at 21:17









RM777RM777

38312




38312












  • $begingroup$
    You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
    $endgroup$
    – rubikscube09
    Jan 25 at 21:35










  • $begingroup$
    I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
    $endgroup$
    – Carsten S
    Jan 26 at 14:19










  • $begingroup$
    The original proof was in German and there was more text involved...
    $endgroup$
    – RM777
    Jan 26 at 16:29


















  • $begingroup$
    You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
    $endgroup$
    – rubikscube09
    Jan 25 at 21:35










  • $begingroup$
    I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
    $endgroup$
    – Carsten S
    Jan 26 at 14:19










  • $begingroup$
    The original proof was in German and there was more text involved...
    $endgroup$
    – RM777
    Jan 26 at 16:29
















$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35




$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35












$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19




$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19












$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29




$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29










1 Answer
1






active

oldest

votes


















2












$begingroup$

Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087628%2fintermediate-value-theorem-proof-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.






        share|cite|improve this answer









        $endgroup$



        Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 26 at 12:12









        Kavi Rama MurthyKavi Rama Murthy

        66.9k53067




        66.9k53067






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087628%2fintermediate-value-theorem-proof-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            What does “Dominus providebit” mean?

            Antonio Litta Visconti Arese