Intermediate Value Theorem proof Question
$begingroup$
There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.
Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$
Proof:
$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$
$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$
$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$
$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$
$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$
$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$
$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$
$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.
I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?
real-analysis
$endgroup$
add a comment |
$begingroup$
There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.
Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$
Proof:
$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$
$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$
$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$
$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$
$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$
$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$
$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$
$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.
I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?
real-analysis
$endgroup$
$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35
$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19
$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29
add a comment |
$begingroup$
There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.
Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$
Proof:
$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$
$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$
$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$
$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$
$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$
$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$
$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$
$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.
I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?
real-analysis
$endgroup$
There is a certain implication $overset{(*)}{Longrightarrow}$ of the proof that I do not understand.
Intermediatevaluetheorem
:$[a,b]subseteqmathbb{R},f:[a,b]rightarrowmathbb{R}
text{ continuous, }f(a)leq y_0leq f(b) Longrightarrow
exists_{xin[a,b]}f(x)=y_0$
Proof:
$$text{Let }M:={xin[a,b]:f(x)geq y_0}$$
$$bin MLongrightarrow Mneqemptysettext{ and }aleq x,forall _{xin M}Longrightarrow existsinf M=:x_0$$
$$Longrightarrowexists_{(x_{n})_{ninmathbb{N}}}x_nrightarrow x_0,x_nin M,forall_{ninmathbb{N}}$$
$$overset{ftext{ is continuous}}Longrightarrow f(x_n)rightarrow f(x_0)overset{x_ngeq y_0,forall_{ninmathbb{N}}}{Longrightarrow}f(x_0)geq y_0Longrightarrow x_0=max M$$
$$text{Suppose }f(x_0)>y_0Longrightarrow exists_{epsilon_0>0}epsilon_0=f(x_0)-y_0$$
$$overset{ftext{ is continuous}}{Longrightarrow}exists_{delta_0>0}forall_{xin[a,b]}|x-x_0|<delta_0Longrightarrow |f(x)-f(x_0)|<epsilon_0$$
$$overset{(*)}{Longrightarrow}f(x)>f(x_0)-epsilon_0=y_0text{ contradicition to }x_0=inf M$$
$(*)$ Is only true if the $x$ I am looking for is smaller than $x_0$ How do I know that such a $x$ exists.
I.e How can I make sure that ${(x_0-delta_0,x_0)cap[a,b]}=:Ssubset M$ is not empty?
real-analysis
real-analysis
edited Jan 25 at 22:05
Bernard
122k741116
122k741116
asked Jan 25 at 21:17
RM777RM777
38312
38312
$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35
$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19
$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29
add a comment |
$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35
$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19
$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29
$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35
$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35
$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19
$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19
$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29
$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087628%2fintermediate-value-theorem-proof-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.
$endgroup$
add a comment |
$begingroup$
Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.
$endgroup$
add a comment |
$begingroup$
Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.
$endgroup$
Take $x=x_0-delta /2$ in the argument. Note that $|x-x_0|=delta /2 <delta$ so we get $|f(x)-f(x_0)| <epsilon_0$ and hence $f(x) >f(x_0)-epsilon_0 >y_0$. This is a contradiction since $x <x_0$.
answered Jan 26 at 12:12
Kavi Rama MurthyKavi Rama Murthy
66.9k53067
66.9k53067
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087628%2fintermediate-value-theorem-proof-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You can take $delta$ small enough so that $(x -delta, x+ delta) subset [a,b]$. You can always take smaller $delta$ in general, as if $delta_1 < delta_2$, we have that $|x - a| < delta_1 implies |x- a| < delta_2$
$endgroup$
– rubikscube09
Jan 25 at 21:35
$begingroup$
I do not know how exact your copy of the proof is, but as the version that you have presented here is written very poorly.
$endgroup$
– Carsten S
Jan 26 at 14:19
$begingroup$
The original proof was in German and there was more text involved...
$endgroup$
– RM777
Jan 26 at 16:29