A kind of horseshoe lemma on the injective resolution
$begingroup$
We know that in an appropriate setting, with some exact sequence $0 to A to B to C to 0$ of $R$-modules with suitable $R$ (commutative ring with unity), we have injective resolution of $A,C$. Then, the Horseshoe lemma says that we have injective resolution of $B$ which makes every diagram commutes. Then, we can take $H^{n}$ functor to get a long exact sequence.
My question is, if we know injective resolution of $B$ and $C$, which already commutes, is it possible to get an injective resolution of $A$ which commutes with injective resolution of $B$? Furthermore, from the long exact sequence of cohomology, can we calculate $H^{n}(A)$ from the information of $H^{n-1}(C)$ and $H^{n}(B)$?
homology-cohomology homological-algebra injective-module
$endgroup$
add a comment |
$begingroup$
We know that in an appropriate setting, with some exact sequence $0 to A to B to C to 0$ of $R$-modules with suitable $R$ (commutative ring with unity), we have injective resolution of $A,C$. Then, the Horseshoe lemma says that we have injective resolution of $B$ which makes every diagram commutes. Then, we can take $H^{n}$ functor to get a long exact sequence.
My question is, if we know injective resolution of $B$ and $C$, which already commutes, is it possible to get an injective resolution of $A$ which commutes with injective resolution of $B$? Furthermore, from the long exact sequence of cohomology, can we calculate $H^{n}(A)$ from the information of $H^{n-1}(C)$ and $H^{n}(B)$?
homology-cohomology homological-algebra injective-module
$endgroup$
1
$begingroup$
what we want to get is that there is a short exact sequence of injective resolutions:$0rightarrow I(A)rightarrow I(B)rightarrow I(C)rightarrow 0$.it is clear that you can get injective resolution of A which commtes with injective resolution of B by comparison theorem.
$endgroup$
– Sky
Jan 26 at 2:02
$begingroup$
@Sky Oh yes, you right. Comparison theorem makes it possible. Thanks!
$endgroup$
– user124697
Jan 27 at 17:25
add a comment |
$begingroup$
We know that in an appropriate setting, with some exact sequence $0 to A to B to C to 0$ of $R$-modules with suitable $R$ (commutative ring with unity), we have injective resolution of $A,C$. Then, the Horseshoe lemma says that we have injective resolution of $B$ which makes every diagram commutes. Then, we can take $H^{n}$ functor to get a long exact sequence.
My question is, if we know injective resolution of $B$ and $C$, which already commutes, is it possible to get an injective resolution of $A$ which commutes with injective resolution of $B$? Furthermore, from the long exact sequence of cohomology, can we calculate $H^{n}(A)$ from the information of $H^{n-1}(C)$ and $H^{n}(B)$?
homology-cohomology homological-algebra injective-module
$endgroup$
We know that in an appropriate setting, with some exact sequence $0 to A to B to C to 0$ of $R$-modules with suitable $R$ (commutative ring with unity), we have injective resolution of $A,C$. Then, the Horseshoe lemma says that we have injective resolution of $B$ which makes every diagram commutes. Then, we can take $H^{n}$ functor to get a long exact sequence.
My question is, if we know injective resolution of $B$ and $C$, which already commutes, is it possible to get an injective resolution of $A$ which commutes with injective resolution of $B$? Furthermore, from the long exact sequence of cohomology, can we calculate $H^{n}(A)$ from the information of $H^{n-1}(C)$ and $H^{n}(B)$?
homology-cohomology homological-algebra injective-module
homology-cohomology homological-algebra injective-module
asked Jan 25 at 20:58
user124697user124697
638515
638515
1
$begingroup$
what we want to get is that there is a short exact sequence of injective resolutions:$0rightarrow I(A)rightarrow I(B)rightarrow I(C)rightarrow 0$.it is clear that you can get injective resolution of A which commtes with injective resolution of B by comparison theorem.
$endgroup$
– Sky
Jan 26 at 2:02
$begingroup$
@Sky Oh yes, you right. Comparison theorem makes it possible. Thanks!
$endgroup$
– user124697
Jan 27 at 17:25
add a comment |
1
$begingroup$
what we want to get is that there is a short exact sequence of injective resolutions:$0rightarrow I(A)rightarrow I(B)rightarrow I(C)rightarrow 0$.it is clear that you can get injective resolution of A which commtes with injective resolution of B by comparison theorem.
$endgroup$
– Sky
Jan 26 at 2:02
$begingroup$
@Sky Oh yes, you right. Comparison theorem makes it possible. Thanks!
$endgroup$
– user124697
Jan 27 at 17:25
1
1
$begingroup$
what we want to get is that there is a short exact sequence of injective resolutions:$0rightarrow I(A)rightarrow I(B)rightarrow I(C)rightarrow 0$.it is clear that you can get injective resolution of A which commtes with injective resolution of B by comparison theorem.
$endgroup$
– Sky
Jan 26 at 2:02
$begingroup$
what we want to get is that there is a short exact sequence of injective resolutions:$0rightarrow I(A)rightarrow I(B)rightarrow I(C)rightarrow 0$.it is clear that you can get injective resolution of A which commtes with injective resolution of B by comparison theorem.
$endgroup$
– Sky
Jan 26 at 2:02
$begingroup$
@Sky Oh yes, you right. Comparison theorem makes it possible. Thanks!
$endgroup$
– user124697
Jan 27 at 17:25
$begingroup$
@Sky Oh yes, you right. Comparison theorem makes it possible. Thanks!
$endgroup$
– user124697
Jan 27 at 17:25
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087615%2fa-kind-of-horseshoe-lemma-on-the-injective-resolution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087615%2fa-kind-of-horseshoe-lemma-on-the-injective-resolution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
what we want to get is that there is a short exact sequence of injective resolutions:$0rightarrow I(A)rightarrow I(B)rightarrow I(C)rightarrow 0$.it is clear that you can get injective resolution of A which commtes with injective resolution of B by comparison theorem.
$endgroup$
– Sky
Jan 26 at 2:02
$begingroup$
@Sky Oh yes, you right. Comparison theorem makes it possible. Thanks!
$endgroup$
– user124697
Jan 27 at 17:25