To Solve a linear PDE of first order












1












$begingroup$


To Solve:
$displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$



My attempt:



Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$



I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..



The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$



How did we get here ?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    To Solve:
    $displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$



    My attempt:



    Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$



    I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..



    The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$



    How did we get here ?










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$


      To Solve:
      $displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$



      My attempt:



      Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$



      I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..



      The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$



      How did we get here ?










      share|cite|improve this question









      $endgroup$




      To Solve:
      $displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$



      My attempt:



      Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$



      I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..



      The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$



      How did we get here ?







      pde






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jun 20 '14 at 10:50









      square_onesquare_one

      1,14021734




      1,14021734






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Let $begin{cases}p=x+y\q=x-yend{cases}$ ,



          Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$



          $dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$



          $thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$



          $(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$



          $dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$



          Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:



          $dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$



          $dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$



          $dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            $$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$



            Setting $z(x,y)=w(u)$, $u=x+y$, we have
            $$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$



            $$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$



            So the original equation becomes



            $$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$



            Setting
            $$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
            We obtain:
            $$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$



            Thus the equation above becomes:
            $$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$



            The solution is given by:



            $$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$



            or



            $$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$



            I have no idea how to go from here to the final expression you have.



            -mike






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f840566%2fto-solve-a-linear-pde-of-first-order%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Let $begin{cases}p=x+y\q=x-yend{cases}$ ,



              Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$



              $dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$



              $thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$



              $(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$



              $dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$



              Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:



              $dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$



              $dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$



              $dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Let $begin{cases}p=x+y\q=x-yend{cases}$ ,



                Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$



                $dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$



                $thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$



                $(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$



                $dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$



                Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:



                $dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$



                $dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$



                $dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let $begin{cases}p=x+y\q=x-yend{cases}$ ,



                  Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$



                  $dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$



                  $thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$



                  $(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$



                  $dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$



                  Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:



                  $dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$



                  $dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$



                  $dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$






                  share|cite|improve this answer









                  $endgroup$



                  Let $begin{cases}p=x+y\q=x-yend{cases}$ ,



                  Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$



                  $dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$



                  $thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$



                  $(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$



                  $dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$



                  Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:



                  $dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$



                  $dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$



                  $dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jun 22 '14 at 4:25









                  doraemonpauldoraemonpaul

                  12.6k31660




                  12.6k31660























                      1












                      $begingroup$

                      $$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$



                      Setting $z(x,y)=w(u)$, $u=x+y$, we have
                      $$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$



                      $$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$



                      So the original equation becomes



                      $$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$



                      Setting
                      $$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
                      We obtain:
                      $$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$



                      Thus the equation above becomes:
                      $$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$



                      The solution is given by:



                      $$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$



                      or



                      $$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$



                      I have no idea how to go from here to the final expression you have.



                      -mike






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        $$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$



                        Setting $z(x,y)=w(u)$, $u=x+y$, we have
                        $$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$



                        $$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$



                        So the original equation becomes



                        $$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$



                        Setting
                        $$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
                        We obtain:
                        $$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$



                        Thus the equation above becomes:
                        $$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$



                        The solution is given by:



                        $$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$



                        or



                        $$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$



                        I have no idea how to go from here to the final expression you have.



                        -mike






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          $$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$



                          Setting $z(x,y)=w(u)$, $u=x+y$, we have
                          $$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$



                          $$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$



                          So the original equation becomes



                          $$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$



                          Setting
                          $$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
                          We obtain:
                          $$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$



                          Thus the equation above becomes:
                          $$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$



                          The solution is given by:



                          $$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$



                          or



                          $$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$



                          I have no idea how to go from here to the final expression you have.



                          -mike






                          share|cite|improve this answer









                          $endgroup$



                          $$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$



                          Setting $z(x,y)=w(u)$, $u=x+y$, we have
                          $$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$



                          $$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$



                          So the original equation becomes



                          $$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$



                          Setting
                          $$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
                          We obtain:
                          $$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$



                          Thus the equation above becomes:
                          $$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$



                          The solution is given by:



                          $$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$



                          or



                          $$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$



                          I have no idea how to go from here to the final expression you have.



                          -mike







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jun 20 '14 at 11:33









                          mikemike

                          4,36421019




                          4,36421019






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f840566%2fto-solve-a-linear-pde-of-first-order%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Mario Kart Wii

                              The Binding of Isaac: Rebirth/Afterbirth

                              What does “Dominus providebit” mean?