To Solve a linear PDE of first order
$begingroup$
To Solve:
$displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$
My attempt:
Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$
I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..
The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$
How did we get here ?
pde
$endgroup$
add a comment |
$begingroup$
To Solve:
$displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$
My attempt:
Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$
I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..
The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$
How did we get here ?
pde
$endgroup$
add a comment |
$begingroup$
To Solve:
$displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$
My attempt:
Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$
I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..
The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$
How did we get here ?
pde
$endgroup$
To Solve:
$displaystyle cos(x+y)frac{partial z}{partial x}+sin(x+y)frac{partial z}{partial y}=z$
My attempt:
Forming the subsidiary equations: $displaystyle frac{dx}{cos(x+y)}=frac{dy}{sin(x+y)}=frac{dz}{z}$
I was hoping to use the method of multipliers or method of grouping, but can't think of anything here..
The given answer is: $displaystyle[cos(x+y)+sin(x+y)]c^{y-x}=phileft[z^{sqrt 2}tanleft(frac{x+y}{2}+frac{pi}{8}right )right]$
How did we get here ?
pde
pde
asked Jun 20 '14 at 10:50
square_onesquare_one
1,14021734
1,14021734
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $begin{cases}p=x+y\q=x-yend{cases}$ ,
Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$
$dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$
$thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$
$(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$
$dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$
Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:
$dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$
$dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$
$dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$
$endgroup$
add a comment |
$begingroup$
$$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$
Setting $z(x,y)=w(u)$, $u=x+y$, we have
$$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$
$$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$
So the original equation becomes
$$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$
Setting
$$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
We obtain:
$$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$
Thus the equation above becomes:
$$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$
The solution is given by:
$$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$
or
$$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$
I have no idea how to go from here to the final expression you have.
-mike
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f840566%2fto-solve-a-linear-pde-of-first-order%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $begin{cases}p=x+y\q=x-yend{cases}$ ,
Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$
$dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$
$thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$
$(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$
$dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$
Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:
$dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$
$dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$
$dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$
$endgroup$
add a comment |
$begingroup$
Let $begin{cases}p=x+y\q=x-yend{cases}$ ,
Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$
$dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$
$thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$
$(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$
$dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$
Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:
$dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$
$dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$
$dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$
$endgroup$
add a comment |
$begingroup$
Let $begin{cases}p=x+y\q=x-yend{cases}$ ,
Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$
$dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$
$thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$
$(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$
$dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$
Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:
$dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$
$dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$
$dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$
$endgroup$
Let $begin{cases}p=x+y\q=x-yend{cases}$ ,
Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial p}dfrac{partial p}{partial x}+dfrac{partial z}{partial q}dfrac{partial q}{partial x}=dfrac{partial z}{partial p}+dfrac{partial z}{partial q}$
$dfrac{partial z}{partial y}=dfrac{partial z}{partial p}dfrac{partial p}{partial y}+dfrac{partial z}{partial q}dfrac{partial q}{partial y}=dfrac{partial z}{partial p}-dfrac{partial z}{partial q}$
$thereforecos pleft(dfrac{partial z}{partial p}+dfrac{partial z}{partial q}right)+sin pleft(dfrac{partial z}{partial p}-dfrac{partial z}{partial q}right)=z$
$(sin p+cos p)dfrac{partial z}{partial p}+(cos p-sin p)dfrac{partial z}{partial q}=z$
$dfrac{partial z}{partial p}+dfrac{cos p-sin p}{sin p+cos p}dfrac{partial z}{partial q}=dfrac{z}{sin p+cos p}$
Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:
$dfrac{dp}{dt}=1$ , letting $p(0)=0$ , we have $p=t$
$dfrac{dq}{dt}=dfrac{cos p-sin p}{sin p+cos p}=dfrac{cos t-sin t}{sin t+cos t}$ , letting $q(0)=q_0$ , we have $q=q_0+ln(sin t+cos t)=q_0+ln(sin p+cos p)$
$dfrac{dz}{dt}=dfrac{z}{sin p+cos p}=dfrac{z}{sin t+cos t}$ , we have $z=phi(q_0)tan^frac{1}{sqrt2}left(dfrac{t}{2}+dfrac{pi}{8}right)=phi(q-ln(sin p+cos p))tan^frac{1}{sqrt2}left(dfrac{p}{2}+dfrac{pi}{8}right)=phi(x-y-ln(sin(x+y)+cos(x+y)))tan^frac{1}{sqrt2}left(dfrac{x+y}{2}+dfrac{pi}{8}right)$
answered Jun 22 '14 at 4:25
doraemonpauldoraemonpaul
12.6k31660
12.6k31660
add a comment |
add a comment |
$begingroup$
$$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$
Setting $z(x,y)=w(u)$, $u=x+y$, we have
$$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$
$$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$
So the original equation becomes
$$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$
Setting
$$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
We obtain:
$$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$
Thus the equation above becomes:
$$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$
The solution is given by:
$$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$
or
$$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$
I have no idea how to go from here to the final expression you have.
-mike
$endgroup$
add a comment |
$begingroup$
$$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$
Setting $z(x,y)=w(u)$, $u=x+y$, we have
$$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$
$$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$
So the original equation becomes
$$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$
Setting
$$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
We obtain:
$$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$
Thus the equation above becomes:
$$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$
The solution is given by:
$$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$
or
$$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$
I have no idea how to go from here to the final expression you have.
-mike
$endgroup$
add a comment |
$begingroup$
$$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$
Setting $z(x,y)=w(u)$, $u=x+y$, we have
$$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$
$$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$
So the original equation becomes
$$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$
Setting
$$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
We obtain:
$$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$
Thus the equation above becomes:
$$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$
The solution is given by:
$$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$
or
$$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$
I have no idea how to go from here to the final expression you have.
-mike
$endgroup$
$$ cos(x+y)frac{partial z(x,y)}{partial x}+sin(x+y)frac{partial z(x,y)}{partial y}=z(x,y)$$
Setting $z(x,y)=w(u)$, $u=x+y$, we have
$$frac{partial z(x,y)}{partial x}=frac{dw(u)}{du}frac{partial u}{partial x}=frac{dw(u)}{du}$$
$$frac{partial z(x,y)}{partial y}=frac{dw(u)}{du}frac{partial u}{partial y}=frac{dw(u)}{du}$$
So the original equation becomes
$$ (cos u+sin u)frac{d w(u)}{d u}=w(u)$$
Setting
$$cos u=frac{1-t^2}{1+t^2}, sin u=frac{2t}{1+t^2}, t=tan(u/2), w(u)=f(t)$$,
We obtain:
$$ du=frac{2dt}{1+t^2}, dw(u)=df(t)$$
Thus the equation above becomes:
$$ (1+2t-t^2)frac{df(t)}{dt}=2f(t)$$
The solution is given by:
$$ln f(t)=ln c_1+2^{-3/2}ln frac{sqrt{2}-1+t}{sqrt{2}+1-t}$$
or
$$f(t)=c_1left(frac{sqrt{2}-1+t}{sqrt{2}+1-t}right)^{2^{-3/2}}$$
I have no idea how to go from here to the final expression you have.
-mike
answered Jun 20 '14 at 11:33
mikemike
4,36421019
4,36421019
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f840566%2fto-solve-a-linear-pde-of-first-order%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown