Show that a space of holomorphic sections of a line bundle is isomorphic to the space of meromorphic...
$begingroup$
Let $Sigma$ be a Riemann surface, $x in Sigma$ and let $z: U rightarrow D subset mathbb{C}$ be a local coordinate system centered at $x$. For every $k in mathbb{Z}$, a holomorphic line bundle $L_{kx}$ on $Sigma$ is defined by gluing the trivial vector bundles $(Sigma backslash {x}) times mathbb{C} rightarrow Sigma$ and $U times mathbb{C} rightarrow U$ via the holomorphic transition function
$$(U backslash {x}) times mathbb{C} rightarrow (U backslash {x}) times mathbb{C}, (p, v) mapsto (p, z(p)^k v)$$
Can someone give me some hints how to prove the following claims ?
The space of global holomorphic sections of $L_{kx}$ is isomorphic to the space of meromorphic functions on $Sigma$, holomorphic outside of $x$ and has a pole of order at most $k$ if $k geq 0$ and a zero of order $k$ if $k < 0$.
Thanks for your help.
complex-geometry vector-bundles riemann-surfaces holomorphic-bundles line-bundles
$endgroup$
add a comment |
$begingroup$
Let $Sigma$ be a Riemann surface, $x in Sigma$ and let $z: U rightarrow D subset mathbb{C}$ be a local coordinate system centered at $x$. For every $k in mathbb{Z}$, a holomorphic line bundle $L_{kx}$ on $Sigma$ is defined by gluing the trivial vector bundles $(Sigma backslash {x}) times mathbb{C} rightarrow Sigma$ and $U times mathbb{C} rightarrow U$ via the holomorphic transition function
$$(U backslash {x}) times mathbb{C} rightarrow (U backslash {x}) times mathbb{C}, (p, v) mapsto (p, z(p)^k v)$$
Can someone give me some hints how to prove the following claims ?
The space of global holomorphic sections of $L_{kx}$ is isomorphic to the space of meromorphic functions on $Sigma$, holomorphic outside of $x$ and has a pole of order at most $k$ if $k geq 0$ and a zero of order $k$ if $k < 0$.
Thanks for your help.
complex-geometry vector-bundles riemann-surfaces holomorphic-bundles line-bundles
$endgroup$
add a comment |
$begingroup$
Let $Sigma$ be a Riemann surface, $x in Sigma$ and let $z: U rightarrow D subset mathbb{C}$ be a local coordinate system centered at $x$. For every $k in mathbb{Z}$, a holomorphic line bundle $L_{kx}$ on $Sigma$ is defined by gluing the trivial vector bundles $(Sigma backslash {x}) times mathbb{C} rightarrow Sigma$ and $U times mathbb{C} rightarrow U$ via the holomorphic transition function
$$(U backslash {x}) times mathbb{C} rightarrow (U backslash {x}) times mathbb{C}, (p, v) mapsto (p, z(p)^k v)$$
Can someone give me some hints how to prove the following claims ?
The space of global holomorphic sections of $L_{kx}$ is isomorphic to the space of meromorphic functions on $Sigma$, holomorphic outside of $x$ and has a pole of order at most $k$ if $k geq 0$ and a zero of order $k$ if $k < 0$.
Thanks for your help.
complex-geometry vector-bundles riemann-surfaces holomorphic-bundles line-bundles
$endgroup$
Let $Sigma$ be a Riemann surface, $x in Sigma$ and let $z: U rightarrow D subset mathbb{C}$ be a local coordinate system centered at $x$. For every $k in mathbb{Z}$, a holomorphic line bundle $L_{kx}$ on $Sigma$ is defined by gluing the trivial vector bundles $(Sigma backslash {x}) times mathbb{C} rightarrow Sigma$ and $U times mathbb{C} rightarrow U$ via the holomorphic transition function
$$(U backslash {x}) times mathbb{C} rightarrow (U backslash {x}) times mathbb{C}, (p, v) mapsto (p, z(p)^k v)$$
Can someone give me some hints how to prove the following claims ?
The space of global holomorphic sections of $L_{kx}$ is isomorphic to the space of meromorphic functions on $Sigma$, holomorphic outside of $x$ and has a pole of order at most $k$ if $k geq 0$ and a zero of order $k$ if $k < 0$.
Thanks for your help.
complex-geometry vector-bundles riemann-surfaces holomorphic-bundles line-bundles
complex-geometry vector-bundles riemann-surfaces holomorphic-bundles line-bundles
asked Jan 12 at 10:52
CrystalCrystal
33319
33319
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070780%2fshow-that-a-space-of-holomorphic-sections-of-a-line-bundle-is-isomorphic-to-the%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070780%2fshow-that-a-space-of-holomorphic-sections-of-a-line-bundle-is-isomorphic-to-the%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown