Independence system/ graph-theory
$begingroup$
$ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.
$E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$
Can somebody give me a hint to do that?
combinatorics graph-theory independence matroids
$endgroup$
add a comment |
$begingroup$
$ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.
$E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$
Can somebody give me a hint to do that?
combinatorics graph-theory independence matroids
$endgroup$
add a comment |
$begingroup$
$ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.
$E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$
Can somebody give me a hint to do that?
combinatorics graph-theory independence matroids
$endgroup$
$ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.
$E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$
Can somebody give me a hint to do that?
combinatorics graph-theory independence matroids
combinatorics graph-theory independence matroids
edited Jan 12 at 16:01
greedoid
39.9k114798
39.9k114798
asked Jan 12 at 9:32
Leon1998Leon1998
266
266
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.
Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$
then
begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
&+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
&=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
&=&w(j)-w(e_{m+1})\
&=&w(j)-0\
&= & w'(T_j)
end{eqnarray}
So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:
For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:
begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
&=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
&= &sum _{jin T}w'(T_j)\
&= & w'(T)
end{eqnarray}
$endgroup$
$begingroup$
Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
$endgroup$
– Leon1998
Jan 12 at 13:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070734%2findependence-system-graph-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.
Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$
then
begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
&+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
&=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
&=&w(j)-w(e_{m+1})\
&=&w(j)-0\
&= & w'(T_j)
end{eqnarray}
So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:
For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:
begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
&=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
&= &sum _{jin T}w'(T_j)\
&= & w'(T)
end{eqnarray}
$endgroup$
$begingroup$
Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
$endgroup$
– Leon1998
Jan 12 at 13:17
add a comment |
$begingroup$
It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.
Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$
then
begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
&+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
&=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
&=&w(j)-w(e_{m+1})\
&=&w(j)-0\
&= & w'(T_j)
end{eqnarray}
So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:
For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:
begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
&=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
&= &sum _{jin T}w'(T_j)\
&= & w'(T)
end{eqnarray}
$endgroup$
$begingroup$
Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
$endgroup$
– Leon1998
Jan 12 at 13:17
add a comment |
$begingroup$
It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.
Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$
then
begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
&+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
&=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
&=&w(j)-w(e_{m+1})\
&=&w(j)-0\
&= & w'(T_j)
end{eqnarray}
So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:
For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:
begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
&=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
&= &sum _{jin T}w'(T_j)\
&= & w'(T)
end{eqnarray}
$endgroup$
It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.
Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$
then
begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
&+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
&=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
&=&w(j)-w(e_{m+1})\
&=&w(j)-0\
&= & w'(T_j)
end{eqnarray}
So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:
For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:
begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
&=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
&= &sum _{jin T}w'(T_j)\
&= & w'(T)
end{eqnarray}
edited Jan 12 at 10:56
answered Jan 12 at 10:29
greedoidgreedoid
39.9k114798
39.9k114798
$begingroup$
Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
$endgroup$
– Leon1998
Jan 12 at 13:17
add a comment |
$begingroup$
Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
$endgroup$
– Leon1998
Jan 12 at 13:17
$begingroup$
Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
$endgroup$
– Leon1998
Jan 12 at 13:17
$begingroup$
Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
$endgroup$
– Leon1998
Jan 12 at 13:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070734%2findependence-system-graph-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown