Principal congruence subgroup index in $SL(2,mathbb{Z})$
$begingroup$
Why has the principal congruence subgroup,
begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}
in $SL(2,mathbb{Z})=Gamma(1)$ finite index,
begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}
when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?
group-theory
$endgroup$
add a comment |
$begingroup$
Why has the principal congruence subgroup,
begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}
in $SL(2,mathbb{Z})=Gamma(1)$ finite index,
begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}
when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?
group-theory
$endgroup$
2
$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31
$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36
2
$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50
$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17
add a comment |
$begingroup$
Why has the principal congruence subgroup,
begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}
in $SL(2,mathbb{Z})=Gamma(1)$ finite index,
begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}
when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?
group-theory
$endgroup$
Why has the principal congruence subgroup,
begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}
in $SL(2,mathbb{Z})=Gamma(1)$ finite index,
begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}
when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?
group-theory
group-theory
edited Jan 8 at 14:24
Alíz
asked May 21 '15 at 12:22
AlízAlíz
428
428
2
$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31
$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36
2
$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50
$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17
add a comment |
2
$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31
$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36
2
$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50
$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17
2
2
$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31
$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31
$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36
$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36
2
2
$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50
$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50
$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17
$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1292616%2fprincipal-congruence-subgroup-index-in-sl2-mathbbz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1292616%2fprincipal-congruence-subgroup-index-in-sl2-mathbbz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31
$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36
2
$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50
$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17