Principal congruence subgroup index in $SL(2,mathbb{Z})$












1












$begingroup$


Why has the principal congruence subgroup,



begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}



in $SL(2,mathbb{Z})=Gamma(1)$ finite index,



begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}



when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
    $endgroup$
    – Derek Holt
    May 21 '15 at 12:31












  • $begingroup$
    So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
    $endgroup$
    – Alíz
    May 21 '15 at 12:36






  • 2




    $begingroup$
    The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
    $endgroup$
    – Derek Holt
    May 21 '15 at 15:50












  • $begingroup$
    Thank you for the answer! :)
    $endgroup$
    – Alíz
    May 21 '15 at 16:17
















1












$begingroup$


Why has the principal congruence subgroup,



begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}



in $SL(2,mathbb{Z})=Gamma(1)$ finite index,



begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}



when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
    $endgroup$
    – Derek Holt
    May 21 '15 at 12:31












  • $begingroup$
    So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
    $endgroup$
    – Alíz
    May 21 '15 at 12:36






  • 2




    $begingroup$
    The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
    $endgroup$
    – Derek Holt
    May 21 '15 at 15:50












  • $begingroup$
    Thank you for the answer! :)
    $endgroup$
    – Alíz
    May 21 '15 at 16:17














1












1








1


0



$begingroup$


Why has the principal congruence subgroup,



begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}



in $SL(2,mathbb{Z})=Gamma(1)$ finite index,



begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}



when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?










share|cite|improve this question











$endgroup$




Why has the principal congruence subgroup,



begin{equation}
Gamma(N)~=~Bigg{begin{pmatrix} a & b \ c & d end{pmatrix}in SL(2,mathbb{Z})~|~aequiv dequiv 1 ~text{and}~ bequiv cequiv 0~ text{mod}~NBigg}
end{equation}



in $SL(2,mathbb{Z})=Gamma(1)$ finite index,



begin{equation}
big[Gamma(1):Gamma(N)big]=varphi(N),
end{equation}



when $Gamma(N)$ and $SL(2,mathbb{Z})$ has infinite order, and why equal the index to the Euler-function?







group-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 14:24







Alíz

















asked May 21 '15 at 12:22









AlízAlíz

428




428








  • 2




    $begingroup$
    It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
    $endgroup$
    – Derek Holt
    May 21 '15 at 12:31












  • $begingroup$
    So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
    $endgroup$
    – Alíz
    May 21 '15 at 12:36






  • 2




    $begingroup$
    The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
    $endgroup$
    – Derek Holt
    May 21 '15 at 15:50












  • $begingroup$
    Thank you for the answer! :)
    $endgroup$
    – Alíz
    May 21 '15 at 16:17














  • 2




    $begingroup$
    It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
    $endgroup$
    – Derek Holt
    May 21 '15 at 12:31












  • $begingroup$
    So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
    $endgroup$
    – Alíz
    May 21 '15 at 12:36






  • 2




    $begingroup$
    The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
    $endgroup$
    – Derek Holt
    May 21 '15 at 15:50












  • $begingroup$
    Thank you for the answer! :)
    $endgroup$
    – Alíz
    May 21 '15 at 16:17








2




2




$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31






$begingroup$
It's the kernel of a homomorphism onto the finite group ${rm SL}(2,{mathbb Z}/N{mathbb Z})$, so it has finite index. I don't believe your claim about the index.
$endgroup$
– Derek Holt
May 21 '15 at 12:31














$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36




$begingroup$
So it isn't true: $big[Gamma(1):Gamma(N)big]=varphi(N)$ isn't it?
$endgroup$
– Alíz
May 21 '15 at 12:36




2




2




$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50






$begingroup$
The index is $|{rm SL}(2,{mathbb Z}/N{mathbb Z})| = N^3prod_{p|N}(1-frac{1}{p^2})$ with $p$ prime. See people.reed.edu/~jerry/332/mfms.pdf
$endgroup$
– Derek Holt
May 21 '15 at 15:50














$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17




$begingroup$
Thank you for the answer! :)
$endgroup$
– Alíz
May 21 '15 at 16:17










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1292616%2fprincipal-congruence-subgroup-index-in-sl2-mathbbz%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1292616%2fprincipal-congruence-subgroup-index-in-sl2-mathbbz%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?