Limit as $xto 0$ of a function
$begingroup$
$$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$
Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.
limits analysis
$endgroup$
add a comment |
$begingroup$
$$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$
Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.
limits analysis
$endgroup$
add a comment |
$begingroup$
$$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$
Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.
limits analysis
$endgroup$
$$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$
Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.
limits analysis
limits analysis
edited Jan 8 at 14:27
amWhy
1
1
asked Jan 8 at 14:20
Oliver BeckOliver Beck
202
202
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
L'Hopital works.
$lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
{1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
$
$endgroup$
add a comment |
$begingroup$
Let $sqrt x=2h,x=4h^2$
$$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$
One or two rounds of L'Hopital now does the trick.
$endgroup$
add a comment |
$begingroup$
Hint:
- When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.
$endgroup$
add a comment |
$begingroup$
Use series expansion for $e^{3x}$ and $cossqrt{x}.$
$displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$
$endgroup$
add a comment |
$begingroup$
You can solve the limit without L’Hôpital as well, such as via the series expansion:
$$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$
$$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$
Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to
$$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066219%2flimit-as-x-to-0-of-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
L'Hopital works.
$lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
{1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
$
$endgroup$
add a comment |
$begingroup$
L'Hopital works.
$lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
{1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
$
$endgroup$
add a comment |
$begingroup$
L'Hopital works.
$lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
{1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
$
$endgroup$
L'Hopital works.
$lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
{1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
$
answered Jan 8 at 14:30
SchlubbidubbiSchlubbidubbi
914
914
add a comment |
add a comment |
$begingroup$
Let $sqrt x=2h,x=4h^2$
$$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$
$endgroup$
add a comment |
$begingroup$
Let $sqrt x=2h,x=4h^2$
$$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$
$endgroup$
add a comment |
$begingroup$
Let $sqrt x=2h,x=4h^2$
$$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$
$endgroup$
Let $sqrt x=2h,x=4h^2$
$$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$
answered Jan 8 at 14:35
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
add a comment |
add a comment |
$begingroup$
Hint:
$$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$
One or two rounds of L'Hopital now does the trick.
$endgroup$
add a comment |
$begingroup$
Hint:
$$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$
One or two rounds of L'Hopital now does the trick.
$endgroup$
add a comment |
$begingroup$
Hint:
$$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$
One or two rounds of L'Hopital now does the trick.
$endgroup$
Hint:
$$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$
One or two rounds of L'Hopital now does the trick.
answered Jan 8 at 14:37
Barry CipraBarry Cipra
59.4k653125
59.4k653125
add a comment |
add a comment |
$begingroup$
Hint:
- When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.
$endgroup$
add a comment |
$begingroup$
Hint:
- When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.
$endgroup$
add a comment |
$begingroup$
Hint:
- When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.
$endgroup$
Hint:
- When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.
answered Jan 8 at 14:39
Siong Thye GohSiong Thye Goh
100k1465117
100k1465117
add a comment |
add a comment |
$begingroup$
Use series expansion for $e^{3x}$ and $cossqrt{x}.$
$displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$
$endgroup$
add a comment |
$begingroup$
Use series expansion for $e^{3x}$ and $cossqrt{x}.$
$displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$
$endgroup$
add a comment |
$begingroup$
Use series expansion for $e^{3x}$ and $cossqrt{x}.$
$displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$
$endgroup$
Use series expansion for $e^{3x}$ and $cossqrt{x}.$
$displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$
answered Jan 8 at 14:43
Arjun BanerjeeArjun Banerjee
43610
43610
add a comment |
add a comment |
$begingroup$
You can solve the limit without L’Hôpital as well, such as via the series expansion:
$$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$
$$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$
Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to
$$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$
$endgroup$
add a comment |
$begingroup$
You can solve the limit without L’Hôpital as well, such as via the series expansion:
$$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$
$$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$
Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to
$$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$
$endgroup$
add a comment |
$begingroup$
You can solve the limit without L’Hôpital as well, such as via the series expansion:
$$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$
$$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$
Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to
$$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$
$endgroup$
You can solve the limit without L’Hôpital as well, such as via the series expansion:
$$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$
$$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$
Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to
$$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$
answered Jan 8 at 14:50
KM101KM101
5,9611523
5,9611523
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066219%2flimit-as-x-to-0-of-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown