Limit as $xto 0$ of a function












1












$begingroup$


$$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$



Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    $$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$



    Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      $$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$



      Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.










      share|cite|improve this question











      $endgroup$




      $$lim_{xrightarrow 0} frac{e^{3x}-1}{cos left( sqrt{x}right)-1}$$



      Does anyone know how to solve this limit? It gives 0/0 which normally I would use l'Hopital's rule but it seems to lead me on an endless loop which I don't know how to break out of.







      limits analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 8 at 14:27









      amWhy

      1




      1










      asked Jan 8 at 14:20









      Oliver BeckOliver Beck

      202




      202






















          6 Answers
          6






          active

          oldest

          votes


















          3












          $begingroup$

          L'Hopital works.



          $lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
          {1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
          $






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Let $sqrt x=2h,x=4h^2$



            $$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Hint:



              $$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$



              One or two rounds of L'Hopital now does the trick.






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Hint:




                • When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.






                share|cite|improve this answer









                $endgroup$





















                  0












                  $begingroup$

                  Use series expansion for $e^{3x}$ and $cossqrt{x}.$



                  $displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$






                  share|cite|improve this answer









                  $endgroup$





















                    0












                    $begingroup$

                    You can solve the limit without L’Hôpital as well, such as via the series expansion:



                    $$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$



                    $$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$



                    Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to



                    $$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$






                    share|cite|improve this answer









                    $endgroup$













                      Your Answer





                      StackExchange.ifUsing("editor", function () {
                      return StackExchange.using("mathjaxEditing", function () {
                      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                      });
                      });
                      }, "mathjax-editing");

                      StackExchange.ready(function() {
                      var channelOptions = {
                      tags: "".split(" "),
                      id: "69"
                      };
                      initTagRenderer("".split(" "), "".split(" "), channelOptions);

                      StackExchange.using("externalEditor", function() {
                      // Have to fire editor after snippets, if snippets enabled
                      if (StackExchange.settings.snippets.snippetsEnabled) {
                      StackExchange.using("snippets", function() {
                      createEditor();
                      });
                      }
                      else {
                      createEditor();
                      }
                      });

                      function createEditor() {
                      StackExchange.prepareEditor({
                      heartbeatType: 'answer',
                      autoActivateHeartbeat: false,
                      convertImagesToLinks: true,
                      noModals: true,
                      showLowRepImageUploadWarning: true,
                      reputationToPostImages: 10,
                      bindNavPrevention: true,
                      postfix: "",
                      imageUploader: {
                      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                      allowUrls: true
                      },
                      noCode: true, onDemand: true,
                      discardSelector: ".discard-answer"
                      ,immediatelyShowMarkdownHelp:true
                      });


                      }
                      });














                      draft saved

                      draft discarded


















                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066219%2flimit-as-x-to-0-of-a-function%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown

























                      6 Answers
                      6






                      active

                      oldest

                      votes








                      6 Answers
                      6






                      active

                      oldest

                      votes









                      active

                      oldest

                      votes






                      active

                      oldest

                      votes









                      3












                      $begingroup$

                      L'Hopital works.



                      $lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
                      {1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
                      $






                      share|cite|improve this answer









                      $endgroup$


















                        3












                        $begingroup$

                        L'Hopital works.



                        $lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
                        {1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
                        $






                        share|cite|improve this answer









                        $endgroup$
















                          3












                          3








                          3





                          $begingroup$

                          L'Hopital works.



                          $lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
                          {1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
                          $






                          share|cite|improve this answer









                          $endgroup$



                          L'Hopital works.



                          $lim_{x to 0} frac{e^{3x}-1}{cos(sqrt{x})-1} = lim_{xto 0} frac{3e^{3x}}{-frac
                          {1}{2} frac{sin (sqrt{x})}{sqrt{x}}}= frac{3}{-frac{1}{2}*1} = -6.
                          $







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 8 at 14:30









                          SchlubbidubbiSchlubbidubbi

                          914




                          914























                              1












                              $begingroup$

                              Let $sqrt x=2h,x=4h^2$



                              $$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$






                              share|cite|improve this answer









                              $endgroup$


















                                1












                                $begingroup$

                                Let $sqrt x=2h,x=4h^2$



                                $$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$






                                share|cite|improve this answer









                                $endgroup$
















                                  1












                                  1








                                  1





                                  $begingroup$

                                  Let $sqrt x=2h,x=4h^2$



                                  $$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$






                                  share|cite|improve this answer









                                  $endgroup$



                                  Let $sqrt x=2h,x=4h^2$



                                  $$dfrac{e^{12h^2}-1}{cos2h-1}=-dfrac{e^{12h^2}-1}{12h^2}left(dfrac h{sin h}right)^2dfrac{12}2$$







                                  share|cite|improve this answer












                                  share|cite|improve this answer



                                  share|cite|improve this answer










                                  answered Jan 8 at 14:35









                                  lab bhattacharjeelab bhattacharjee

                                  224k15156274




                                  224k15156274























                                      1












                                      $begingroup$

                                      Hint:



                                      $$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$



                                      One or two rounds of L'Hopital now does the trick.






                                      share|cite|improve this answer









                                      $endgroup$


















                                        1












                                        $begingroup$

                                        Hint:



                                        $$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$



                                        One or two rounds of L'Hopital now does the trick.






                                        share|cite|improve this answer









                                        $endgroup$
















                                          1












                                          1








                                          1





                                          $begingroup$

                                          Hint:



                                          $$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$



                                          One or two rounds of L'Hopital now does the trick.






                                          share|cite|improve this answer









                                          $endgroup$



                                          Hint:



                                          $$lim_{xto0}{e^{3x}-1overcos(sqrt x)-1}=lim_{uto0^+}{e^{3u^2}-1overcos u-1}$$



                                          One or two rounds of L'Hopital now does the trick.







                                          share|cite|improve this answer












                                          share|cite|improve this answer



                                          share|cite|improve this answer










                                          answered Jan 8 at 14:37









                                          Barry CipraBarry Cipra

                                          59.4k653125




                                          59.4k653125























                                              0












                                              $begingroup$

                                              Hint:




                                              • When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.






                                              share|cite|improve this answer









                                              $endgroup$


















                                                0












                                                $begingroup$

                                                Hint:




                                                • When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.






                                                share|cite|improve this answer









                                                $endgroup$
















                                                  0












                                                  0








                                                  0





                                                  $begingroup$

                                                  Hint:




                                                  • When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.






                                                  share|cite|improve this answer









                                                  $endgroup$



                                                  Hint:




                                                  • When $x$ is small, $e^x approx 1+x$ and $cos x approx 1-frac{x^2}2$.







                                                  share|cite|improve this answer












                                                  share|cite|improve this answer



                                                  share|cite|improve this answer










                                                  answered Jan 8 at 14:39









                                                  Siong Thye GohSiong Thye Goh

                                                  100k1465117




                                                  100k1465117























                                                      0












                                                      $begingroup$

                                                      Use series expansion for $e^{3x}$ and $cossqrt{x}.$



                                                      $displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$






                                                      share|cite|improve this answer









                                                      $endgroup$


















                                                        0












                                                        $begingroup$

                                                        Use series expansion for $e^{3x}$ and $cossqrt{x}.$



                                                        $displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$






                                                        share|cite|improve this answer









                                                        $endgroup$
















                                                          0












                                                          0








                                                          0





                                                          $begingroup$

                                                          Use series expansion for $e^{3x}$ and $cossqrt{x}.$



                                                          $displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$






                                                          share|cite|improve this answer









                                                          $endgroup$



                                                          Use series expansion for $e^{3x}$ and $cossqrt{x}.$



                                                          $displaystylelim_{xrightarrow 0} dfrac{e^{3x}-1}{cos left( sqrt{x}right)-1}=displaystylelim_{xrightarrow 0} dfrac{left(1+3x+frac{(3x)^2}{2!}+cdotsright)-1}{left(1-frac{x}{2!}+frac{x^2}{4!}+cdotsright)-1}=displaystylelim_{xrightarrow 0} dfrac{3x+O(x^2)}{-frac{x}{2}+O(x^2)}=displaystylelim_{xrightarrow 0} dfrac{3x}{-frac{x}{2}}=6$







                                                          share|cite|improve this answer












                                                          share|cite|improve this answer



                                                          share|cite|improve this answer










                                                          answered Jan 8 at 14:43









                                                          Arjun BanerjeeArjun Banerjee

                                                          43610




                                                          43610























                                                              0












                                                              $begingroup$

                                                              You can solve the limit without L’Hôpital as well, such as via the series expansion:



                                                              $$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$



                                                              $$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$



                                                              Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to



                                                              $$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$






                                                              share|cite|improve this answer









                                                              $endgroup$


















                                                                0












                                                                $begingroup$

                                                                You can solve the limit without L’Hôpital as well, such as via the series expansion:



                                                                $$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$



                                                                $$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$



                                                                Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to



                                                                $$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$






                                                                share|cite|improve this answer









                                                                $endgroup$
















                                                                  0












                                                                  0








                                                                  0





                                                                  $begingroup$

                                                                  You can solve the limit without L’Hôpital as well, such as via the series expansion:



                                                                  $$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$



                                                                  $$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$



                                                                  Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to



                                                                  $$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$






                                                                  share|cite|improve this answer









                                                                  $endgroup$



                                                                  You can solve the limit without L’Hôpital as well, such as via the series expansion:



                                                                  $$cos x = 1-frac{x^2}{2!}+frac{x^4}{4!}-… implies cos x sim 1-frac{x^2}{2}; quad xto 0$$



                                                                  $$e^x = 1+x+frac{x^2}{2!}+… implies e^x sim 1+x; quad xto 0$$



                                                                  Hence, for $x to 0$, $cossqrt{x} sim 1-frac{x}{2}$ and $e^{3x} sim 1+3x$. Hence, the limit simplifies to



                                                                  $$frac{1+3x-1}{1-frac{x}{2}-1} = frac{3x}{-frac{x}{2}} = -6$$







                                                                  share|cite|improve this answer












                                                                  share|cite|improve this answer



                                                                  share|cite|improve this answer










                                                                  answered Jan 8 at 14:50









                                                                  KM101KM101

                                                                  5,9611523




                                                                  5,9611523






























                                                                      draft saved

                                                                      draft discarded




















































                                                                      Thanks for contributing an answer to Mathematics Stack Exchange!


                                                                      • Please be sure to answer the question. Provide details and share your research!

                                                                      But avoid



                                                                      • Asking for help, clarification, or responding to other answers.

                                                                      • Making statements based on opinion; back them up with references or personal experience.


                                                                      Use MathJax to format equations. MathJax reference.


                                                                      To learn more, see our tips on writing great answers.




                                                                      draft saved


                                                                      draft discarded














                                                                      StackExchange.ready(
                                                                      function () {
                                                                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066219%2flimit-as-x-to-0-of-a-function%23new-answer', 'question_page');
                                                                      }
                                                                      );

                                                                      Post as a guest















                                                                      Required, but never shown





















































                                                                      Required, but never shown














                                                                      Required, but never shown












                                                                      Required, but never shown







                                                                      Required, but never shown

































                                                                      Required, but never shown














                                                                      Required, but never shown












                                                                      Required, but never shown







                                                                      Required, but never shown







                                                                      Popular posts from this blog

                                                                      Mario Kart Wii

                                                                      The Binding of Isaac: Rebirth/Afterbirth

                                                                      What does “Dominus providebit” mean?