Find distribution functions of combination of two random variables












-2












$begingroup$


$ξ$ and $η$ are independent random variables with distribution functions $F(x)$ and $G(x)$ correspondingly.



How do you find the distribution functions of random variables listed below in terms of a combination of $F(x)$ and $G(x)$?



$ζ_1=max(xi,eta)$
$ζ_2=min(xi,eta)$
$ζ_3=max(ξ,2η)$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you agree that $mathsf P(zeta_1leq x)=mathsf P(xileq xwedgeetaleq x)$?
    $endgroup$
    – drhab
    Oct 30 '17 at 13:24










  • $begingroup$
    Yep. Finally solved it in a minute after your hint. Thank you.
    $endgroup$
    – mark.keane
    Oct 30 '17 at 14:51


















-2












$begingroup$


$ξ$ and $η$ are independent random variables with distribution functions $F(x)$ and $G(x)$ correspondingly.



How do you find the distribution functions of random variables listed below in terms of a combination of $F(x)$ and $G(x)$?



$ζ_1=max(xi,eta)$
$ζ_2=min(xi,eta)$
$ζ_3=max(ξ,2η)$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you agree that $mathsf P(zeta_1leq x)=mathsf P(xileq xwedgeetaleq x)$?
    $endgroup$
    – drhab
    Oct 30 '17 at 13:24










  • $begingroup$
    Yep. Finally solved it in a minute after your hint. Thank you.
    $endgroup$
    – mark.keane
    Oct 30 '17 at 14:51
















-2












-2








-2





$begingroup$


$ξ$ and $η$ are independent random variables with distribution functions $F(x)$ and $G(x)$ correspondingly.



How do you find the distribution functions of random variables listed below in terms of a combination of $F(x)$ and $G(x)$?



$ζ_1=max(xi,eta)$
$ζ_2=min(xi,eta)$
$ζ_3=max(ξ,2η)$










share|cite|improve this question











$endgroup$




$ξ$ and $η$ are independent random variables with distribution functions $F(x)$ and $G(x)$ correspondingly.



How do you find the distribution functions of random variables listed below in terms of a combination of $F(x)$ and $G(x)$?



$ζ_1=max(xi,eta)$
$ζ_2=min(xi,eta)$
$ζ_3=max(ξ,2η)$







random






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 14:13









amWhy

1




1










asked Oct 30 '17 at 13:10









mark.keanemark.keane

476




476












  • $begingroup$
    Do you agree that $mathsf P(zeta_1leq x)=mathsf P(xileq xwedgeetaleq x)$?
    $endgroup$
    – drhab
    Oct 30 '17 at 13:24










  • $begingroup$
    Yep. Finally solved it in a minute after your hint. Thank you.
    $endgroup$
    – mark.keane
    Oct 30 '17 at 14:51




















  • $begingroup$
    Do you agree that $mathsf P(zeta_1leq x)=mathsf P(xileq xwedgeetaleq x)$?
    $endgroup$
    – drhab
    Oct 30 '17 at 13:24










  • $begingroup$
    Yep. Finally solved it in a minute after your hint. Thank you.
    $endgroup$
    – mark.keane
    Oct 30 '17 at 14:51


















$begingroup$
Do you agree that $mathsf P(zeta_1leq x)=mathsf P(xileq xwedgeetaleq x)$?
$endgroup$
– drhab
Oct 30 '17 at 13:24




$begingroup$
Do you agree that $mathsf P(zeta_1leq x)=mathsf P(xileq xwedgeetaleq x)$?
$endgroup$
– drhab
Oct 30 '17 at 13:24












$begingroup$
Yep. Finally solved it in a minute after your hint. Thank you.
$endgroup$
– mark.keane
Oct 30 '17 at 14:51






$begingroup$
Yep. Finally solved it in a minute after your hint. Thank you.
$endgroup$
– mark.keane
Oct 30 '17 at 14:51












1 Answer
1






active

oldest

votes


















0












$begingroup$

Figured it out right after drhab hint.

$zeta_1 = $ $P(zeta_1≤x)$ = $P(zeta≤x land eta ≤x)$ = $F(x)G(x)$

$zeta_2 = $ $P(zeta_2≤x)$ = $P(zeta≤x lor eta ≤x)$ = $F(x) + G(x) - F(x)G(x)$.

$zeta_3 = $ $P(zeta_3≤x)$ = $P(zeta≤x land 2eta ≤x)$ = $F(x)G(frac{x}{2})$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2496544%2ffind-distribution-functions-of-combination-of-two-random-variables%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Figured it out right after drhab hint.

    $zeta_1 = $ $P(zeta_1≤x)$ = $P(zeta≤x land eta ≤x)$ = $F(x)G(x)$

    $zeta_2 = $ $P(zeta_2≤x)$ = $P(zeta≤x lor eta ≤x)$ = $F(x) + G(x) - F(x)G(x)$.

    $zeta_3 = $ $P(zeta_3≤x)$ = $P(zeta≤x land 2eta ≤x)$ = $F(x)G(frac{x}{2})$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Figured it out right after drhab hint.

      $zeta_1 = $ $P(zeta_1≤x)$ = $P(zeta≤x land eta ≤x)$ = $F(x)G(x)$

      $zeta_2 = $ $P(zeta_2≤x)$ = $P(zeta≤x lor eta ≤x)$ = $F(x) + G(x) - F(x)G(x)$.

      $zeta_3 = $ $P(zeta_3≤x)$ = $P(zeta≤x land 2eta ≤x)$ = $F(x)G(frac{x}{2})$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Figured it out right after drhab hint.

        $zeta_1 = $ $P(zeta_1≤x)$ = $P(zeta≤x land eta ≤x)$ = $F(x)G(x)$

        $zeta_2 = $ $P(zeta_2≤x)$ = $P(zeta≤x lor eta ≤x)$ = $F(x) + G(x) - F(x)G(x)$.

        $zeta_3 = $ $P(zeta_3≤x)$ = $P(zeta≤x land 2eta ≤x)$ = $F(x)G(frac{x}{2})$.






        share|cite|improve this answer









        $endgroup$



        Figured it out right after drhab hint.

        $zeta_1 = $ $P(zeta_1≤x)$ = $P(zeta≤x land eta ≤x)$ = $F(x)G(x)$

        $zeta_2 = $ $P(zeta_2≤x)$ = $P(zeta≤x lor eta ≤x)$ = $F(x) + G(x) - F(x)G(x)$.

        $zeta_3 = $ $P(zeta_3≤x)$ = $P(zeta≤x land 2eta ≤x)$ = $F(x)G(frac{x}{2})$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Oct 30 '17 at 15:11









        mark.keanemark.keane

        476




        476






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2496544%2ffind-distribution-functions-of-combination-of-two-random-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?