Convergence of $int_1^2 frac{1}{sqrt ln x} mathrm { d}x$ by Asymptotic Comparison Test.












1












$begingroup$


According to the material I have,

If $f:[a,b)to mathbb{R} ,bin mathbb{R},fgeq0 $

Then:
i) If $f$ is an infinite function of real order $alphalt1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}xltinfty$
ii) If $f$ is an infinite function of real order $alphageq1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}x=infty$

Based on this information I am trying to evaluate the convergence of $int_1^2 frac{1}{sqrt ln x} mathrm { d}x$

In order to determine the order of my function I consider $$lim_{xto1+}{frac{1}{sqrtln x overfrac{1}{(x-2)^alpha}}}=lim_{xto1+}frac {(x-2)^alpha}{sqrtln x}$$

Despite trying various methods I haven't been able to obtain a real number as a limit value for some $alphainmathbb{R}$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    According to the material I have,

    If $f:[a,b)to mathbb{R} ,bin mathbb{R},fgeq0 $

    Then:
    i) If $f$ is an infinite function of real order $alphalt1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}xltinfty$
    ii) If $f$ is an infinite function of real order $alphageq1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}x=infty$

    Based on this information I am trying to evaluate the convergence of $int_1^2 frac{1}{sqrt ln x} mathrm { d}x$

    In order to determine the order of my function I consider $$lim_{xto1+}{frac{1}{sqrtln x overfrac{1}{(x-2)^alpha}}}=lim_{xto1+}frac {(x-2)^alpha}{sqrtln x}$$

    Despite trying various methods I haven't been able to obtain a real number as a limit value for some $alphainmathbb{R}$










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$


      According to the material I have,

      If $f:[a,b)to mathbb{R} ,bin mathbb{R},fgeq0 $

      Then:
      i) If $f$ is an infinite function of real order $alphalt1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}xltinfty$
      ii) If $f$ is an infinite function of real order $alphageq1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}x=infty$

      Based on this information I am trying to evaluate the convergence of $int_1^2 frac{1}{sqrt ln x} mathrm { d}x$

      In order to determine the order of my function I consider $$lim_{xto1+}{frac{1}{sqrtln x overfrac{1}{(x-2)^alpha}}}=lim_{xto1+}frac {(x-2)^alpha}{sqrtln x}$$

      Despite trying various methods I haven't been able to obtain a real number as a limit value for some $alphainmathbb{R}$










      share|cite|improve this question









      $endgroup$




      According to the material I have,

      If $f:[a,b)to mathbb{R} ,bin mathbb{R},fgeq0 $

      Then:
      i) If $f$ is an infinite function of real order $alphalt1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}xltinfty$
      ii) If $f$ is an infinite function of real order $alphageq1$ with respect to $frac {1}{x-b}$ $implies$ $int_a^bf(x)mathrm { d}x=infty$

      Based on this information I am trying to evaluate the convergence of $int_1^2 frac{1}{sqrt ln x} mathrm { d}x$

      In order to determine the order of my function I consider $$lim_{xto1+}{frac{1}{sqrtln x overfrac{1}{(x-2)^alpha}}}=lim_{xto1+}frac {(x-2)^alpha}{sqrtln x}$$

      Despite trying various methods I haven't been able to obtain a real number as a limit value for some $alphainmathbb{R}$







      asymptotics improper-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 8 at 14:23









      Turan NəsibliTuran Nəsibli

      294




      294






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          An issue is that you look at $b=2$. You should consider the fact that the "problem" is at $1$, and adapt your theorem (it's easy) for $fcolon (a,b]tomathbb{R}$ and look at the $a=1$ end.



          Rewrite, for $x>1$,
          $$
          sqrt{ln x} = sqrt{ln(1+(x-1))},.
          $$

          This seems silly, but now, recall that
          $$
          lim_{uto 0} frac{ln(1+u)}{u} = 1
          $$

          so that
          $$
          lim_{xto 1} frac{sqrt{ln x}}{(x-1)^{1/2}} = lim_{xto 1} sqrt{frac{ln x}{x-1}}= lim_{xto 1} sqrt{frac{ln(1+(x-1))}{x-1}} = sqrt{lim_{xto 1} frac{ln(1+(x-1))}{x-1}} = sqrt{1}=1
          $$



          Can you conclude?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Well,yes, problem is indeed at $a=1$,so it seemed weird to me trying to determine the order of function with respect to ${1over x-2}$.So, to conclude, if c is a point where my function is problematic, I should try to determine the order with respect to ${1over x-c}$.Moreover, if I am determining the order of $f(x)={1over sqrt ln x}$ ,shouldn't I write $$lim_{xto1+}{(x-1)^{1over2}over sqrt{ln (1+(x-1))}}=sqrt{lim_{xto1+}frac{x-1}{ln(1+(x-1))}}=sqrt{lim_{xto1+}(frac {ln(1+(x-1))}{x-1})^-1}=sqrt1=1$$ ?
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:42












          • $begingroup$
            You seem to have a problem with the superscript, but yes. But that's the same... if $f/gto 1$ and $g>0$, then $g/fto 1$ and $f>0$. @TuranNəsibli
            $endgroup$
            – Clement C.
            Jan 8 at 15:44












          • $begingroup$
            I'm trying to fix the problem,and thank you for the help.
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:48










          • $begingroup$
            @TuranNəsibli You're welcome! (for the Latex issue: us a^{-1}, with braces.)
            $endgroup$
            – Clement C.
            Jan 8 at 15:48











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066228%2fconvergence-of-int-12-frac1-sqrt-ln-x-mathrm-dx-by-asymptotic-comp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          An issue is that you look at $b=2$. You should consider the fact that the "problem" is at $1$, and adapt your theorem (it's easy) for $fcolon (a,b]tomathbb{R}$ and look at the $a=1$ end.



          Rewrite, for $x>1$,
          $$
          sqrt{ln x} = sqrt{ln(1+(x-1))},.
          $$

          This seems silly, but now, recall that
          $$
          lim_{uto 0} frac{ln(1+u)}{u} = 1
          $$

          so that
          $$
          lim_{xto 1} frac{sqrt{ln x}}{(x-1)^{1/2}} = lim_{xto 1} sqrt{frac{ln x}{x-1}}= lim_{xto 1} sqrt{frac{ln(1+(x-1))}{x-1}} = sqrt{lim_{xto 1} frac{ln(1+(x-1))}{x-1}} = sqrt{1}=1
          $$



          Can you conclude?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Well,yes, problem is indeed at $a=1$,so it seemed weird to me trying to determine the order of function with respect to ${1over x-2}$.So, to conclude, if c is a point where my function is problematic, I should try to determine the order with respect to ${1over x-c}$.Moreover, if I am determining the order of $f(x)={1over sqrt ln x}$ ,shouldn't I write $$lim_{xto1+}{(x-1)^{1over2}over sqrt{ln (1+(x-1))}}=sqrt{lim_{xto1+}frac{x-1}{ln(1+(x-1))}}=sqrt{lim_{xto1+}(frac {ln(1+(x-1))}{x-1})^-1}=sqrt1=1$$ ?
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:42












          • $begingroup$
            You seem to have a problem with the superscript, but yes. But that's the same... if $f/gto 1$ and $g>0$, then $g/fto 1$ and $f>0$. @TuranNəsibli
            $endgroup$
            – Clement C.
            Jan 8 at 15:44












          • $begingroup$
            I'm trying to fix the problem,and thank you for the help.
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:48










          • $begingroup$
            @TuranNəsibli You're welcome! (for the Latex issue: us a^{-1}, with braces.)
            $endgroup$
            – Clement C.
            Jan 8 at 15:48
















          2












          $begingroup$

          An issue is that you look at $b=2$. You should consider the fact that the "problem" is at $1$, and adapt your theorem (it's easy) for $fcolon (a,b]tomathbb{R}$ and look at the $a=1$ end.



          Rewrite, for $x>1$,
          $$
          sqrt{ln x} = sqrt{ln(1+(x-1))},.
          $$

          This seems silly, but now, recall that
          $$
          lim_{uto 0} frac{ln(1+u)}{u} = 1
          $$

          so that
          $$
          lim_{xto 1} frac{sqrt{ln x}}{(x-1)^{1/2}} = lim_{xto 1} sqrt{frac{ln x}{x-1}}= lim_{xto 1} sqrt{frac{ln(1+(x-1))}{x-1}} = sqrt{lim_{xto 1} frac{ln(1+(x-1))}{x-1}} = sqrt{1}=1
          $$



          Can you conclude?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Well,yes, problem is indeed at $a=1$,so it seemed weird to me trying to determine the order of function with respect to ${1over x-2}$.So, to conclude, if c is a point where my function is problematic, I should try to determine the order with respect to ${1over x-c}$.Moreover, if I am determining the order of $f(x)={1over sqrt ln x}$ ,shouldn't I write $$lim_{xto1+}{(x-1)^{1over2}over sqrt{ln (1+(x-1))}}=sqrt{lim_{xto1+}frac{x-1}{ln(1+(x-1))}}=sqrt{lim_{xto1+}(frac {ln(1+(x-1))}{x-1})^-1}=sqrt1=1$$ ?
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:42












          • $begingroup$
            You seem to have a problem with the superscript, but yes. But that's the same... if $f/gto 1$ and $g>0$, then $g/fto 1$ and $f>0$. @TuranNəsibli
            $endgroup$
            – Clement C.
            Jan 8 at 15:44












          • $begingroup$
            I'm trying to fix the problem,and thank you for the help.
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:48










          • $begingroup$
            @TuranNəsibli You're welcome! (for the Latex issue: us a^{-1}, with braces.)
            $endgroup$
            – Clement C.
            Jan 8 at 15:48














          2












          2








          2





          $begingroup$

          An issue is that you look at $b=2$. You should consider the fact that the "problem" is at $1$, and adapt your theorem (it's easy) for $fcolon (a,b]tomathbb{R}$ and look at the $a=1$ end.



          Rewrite, for $x>1$,
          $$
          sqrt{ln x} = sqrt{ln(1+(x-1))},.
          $$

          This seems silly, but now, recall that
          $$
          lim_{uto 0} frac{ln(1+u)}{u} = 1
          $$

          so that
          $$
          lim_{xto 1} frac{sqrt{ln x}}{(x-1)^{1/2}} = lim_{xto 1} sqrt{frac{ln x}{x-1}}= lim_{xto 1} sqrt{frac{ln(1+(x-1))}{x-1}} = sqrt{lim_{xto 1} frac{ln(1+(x-1))}{x-1}} = sqrt{1}=1
          $$



          Can you conclude?






          share|cite|improve this answer









          $endgroup$



          An issue is that you look at $b=2$. You should consider the fact that the "problem" is at $1$, and adapt your theorem (it's easy) for $fcolon (a,b]tomathbb{R}$ and look at the $a=1$ end.



          Rewrite, for $x>1$,
          $$
          sqrt{ln x} = sqrt{ln(1+(x-1))},.
          $$

          This seems silly, but now, recall that
          $$
          lim_{uto 0} frac{ln(1+u)}{u} = 1
          $$

          so that
          $$
          lim_{xto 1} frac{sqrt{ln x}}{(x-1)^{1/2}} = lim_{xto 1} sqrt{frac{ln x}{x-1}}= lim_{xto 1} sqrt{frac{ln(1+(x-1))}{x-1}} = sqrt{lim_{xto 1} frac{ln(1+(x-1))}{x-1}} = sqrt{1}=1
          $$



          Can you conclude?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 8 at 14:49









          Clement C.Clement C.

          49.8k33886




          49.8k33886












          • $begingroup$
            Well,yes, problem is indeed at $a=1$,so it seemed weird to me trying to determine the order of function with respect to ${1over x-2}$.So, to conclude, if c is a point where my function is problematic, I should try to determine the order with respect to ${1over x-c}$.Moreover, if I am determining the order of $f(x)={1over sqrt ln x}$ ,shouldn't I write $$lim_{xto1+}{(x-1)^{1over2}over sqrt{ln (1+(x-1))}}=sqrt{lim_{xto1+}frac{x-1}{ln(1+(x-1))}}=sqrt{lim_{xto1+}(frac {ln(1+(x-1))}{x-1})^-1}=sqrt1=1$$ ?
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:42












          • $begingroup$
            You seem to have a problem with the superscript, but yes. But that's the same... if $f/gto 1$ and $g>0$, then $g/fto 1$ and $f>0$. @TuranNəsibli
            $endgroup$
            – Clement C.
            Jan 8 at 15:44












          • $begingroup$
            I'm trying to fix the problem,and thank you for the help.
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:48










          • $begingroup$
            @TuranNəsibli You're welcome! (for the Latex issue: us a^{-1}, with braces.)
            $endgroup$
            – Clement C.
            Jan 8 at 15:48


















          • $begingroup$
            Well,yes, problem is indeed at $a=1$,so it seemed weird to me trying to determine the order of function with respect to ${1over x-2}$.So, to conclude, if c is a point where my function is problematic, I should try to determine the order with respect to ${1over x-c}$.Moreover, if I am determining the order of $f(x)={1over sqrt ln x}$ ,shouldn't I write $$lim_{xto1+}{(x-1)^{1over2}over sqrt{ln (1+(x-1))}}=sqrt{lim_{xto1+}frac{x-1}{ln(1+(x-1))}}=sqrt{lim_{xto1+}(frac {ln(1+(x-1))}{x-1})^-1}=sqrt1=1$$ ?
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:42












          • $begingroup$
            You seem to have a problem with the superscript, but yes. But that's the same... if $f/gto 1$ and $g>0$, then $g/fto 1$ and $f>0$. @TuranNəsibli
            $endgroup$
            – Clement C.
            Jan 8 at 15:44












          • $begingroup$
            I'm trying to fix the problem,and thank you for the help.
            $endgroup$
            – Turan Nəsibli
            Jan 8 at 15:48










          • $begingroup$
            @TuranNəsibli You're welcome! (for the Latex issue: us a^{-1}, with braces.)
            $endgroup$
            – Clement C.
            Jan 8 at 15:48
















          $begingroup$
          Well,yes, problem is indeed at $a=1$,so it seemed weird to me trying to determine the order of function with respect to ${1over x-2}$.So, to conclude, if c is a point where my function is problematic, I should try to determine the order with respect to ${1over x-c}$.Moreover, if I am determining the order of $f(x)={1over sqrt ln x}$ ,shouldn't I write $$lim_{xto1+}{(x-1)^{1over2}over sqrt{ln (1+(x-1))}}=sqrt{lim_{xto1+}frac{x-1}{ln(1+(x-1))}}=sqrt{lim_{xto1+}(frac {ln(1+(x-1))}{x-1})^-1}=sqrt1=1$$ ?
          $endgroup$
          – Turan Nəsibli
          Jan 8 at 15:42






          $begingroup$
          Well,yes, problem is indeed at $a=1$,so it seemed weird to me trying to determine the order of function with respect to ${1over x-2}$.So, to conclude, if c is a point where my function is problematic, I should try to determine the order with respect to ${1over x-c}$.Moreover, if I am determining the order of $f(x)={1over sqrt ln x}$ ,shouldn't I write $$lim_{xto1+}{(x-1)^{1over2}over sqrt{ln (1+(x-1))}}=sqrt{lim_{xto1+}frac{x-1}{ln(1+(x-1))}}=sqrt{lim_{xto1+}(frac {ln(1+(x-1))}{x-1})^-1}=sqrt1=1$$ ?
          $endgroup$
          – Turan Nəsibli
          Jan 8 at 15:42














          $begingroup$
          You seem to have a problem with the superscript, but yes. But that's the same... if $f/gto 1$ and $g>0$, then $g/fto 1$ and $f>0$. @TuranNəsibli
          $endgroup$
          – Clement C.
          Jan 8 at 15:44






          $begingroup$
          You seem to have a problem with the superscript, but yes. But that's the same... if $f/gto 1$ and $g>0$, then $g/fto 1$ and $f>0$. @TuranNəsibli
          $endgroup$
          – Clement C.
          Jan 8 at 15:44














          $begingroup$
          I'm trying to fix the problem,and thank you for the help.
          $endgroup$
          – Turan Nəsibli
          Jan 8 at 15:48




          $begingroup$
          I'm trying to fix the problem,and thank you for the help.
          $endgroup$
          – Turan Nəsibli
          Jan 8 at 15:48












          $begingroup$
          @TuranNəsibli You're welcome! (for the Latex issue: us a^{-1}, with braces.)
          $endgroup$
          – Clement C.
          Jan 8 at 15:48




          $begingroup$
          @TuranNəsibli You're welcome! (for the Latex issue: us a^{-1}, with braces.)
          $endgroup$
          – Clement C.
          Jan 8 at 15:48


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066228%2fconvergence-of-int-12-frac1-sqrt-ln-x-mathrm-dx-by-asymptotic-comp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?