Prove (or disprove) that $3^{2n+3}+40n-27$ is divisible by $64$ for any $n$ integer [duplicate]
$begingroup$
This question already has an answer here:
Induction: How to prove that $ab^n+cn+d$ is divisible by $m$. [closed]
4 answers
So I want to prove that is in title. I'm working with modular arithmetic, so if any of you can show me a hint, it will be perfect.
elementary-number-theory modular-arithmetic divisibility
$endgroup$
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 1:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Induction: How to prove that $ab^n+cn+d$ is divisible by $m$. [closed]
4 answers
So I want to prove that is in title. I'm working with modular arithmetic, so if any of you can show me a hint, it will be perfect.
elementary-number-theory modular-arithmetic divisibility
$endgroup$
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 1:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
Hint: Let $x_n = 3^{2n+3}+40n-27$. Compute $x_{n+1}-x_{n} = 8 (3^{2 n + 3} + 5) bmod 64$.
$endgroup$
– lhf
Jan 26 at 1:19
1
$begingroup$
@lhf Easier to use $ x_{n+1}-color{#c00}9,x_n = 64(4-5n). $ This works generally - see this answer in the dupe.
$endgroup$
– Bill Dubuque
Jan 26 at 3:24
add a comment |
$begingroup$
This question already has an answer here:
Induction: How to prove that $ab^n+cn+d$ is divisible by $m$. [closed]
4 answers
So I want to prove that is in title. I'm working with modular arithmetic, so if any of you can show me a hint, it will be perfect.
elementary-number-theory modular-arithmetic divisibility
$endgroup$
This question already has an answer here:
Induction: How to prove that $ab^n+cn+d$ is divisible by $m$. [closed]
4 answers
So I want to prove that is in title. I'm working with modular arithmetic, so if any of you can show me a hint, it will be perfect.
This question already has an answer here:
Induction: How to prove that $ab^n+cn+d$ is divisible by $m$. [closed]
4 answers
elementary-number-theory modular-arithmetic divisibility
elementary-number-theory modular-arithmetic divisibility
edited Jan 25 at 23:50
kccu
10.6k11229
10.6k11229
asked Jan 25 at 23:48
Richard KingstonRichard Kingston
283
283
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 1:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 1:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
Hint: Let $x_n = 3^{2n+3}+40n-27$. Compute $x_{n+1}-x_{n} = 8 (3^{2 n + 3} + 5) bmod 64$.
$endgroup$
– lhf
Jan 26 at 1:19
1
$begingroup$
@lhf Easier to use $ x_{n+1}-color{#c00}9,x_n = 64(4-5n). $ This works generally - see this answer in the dupe.
$endgroup$
– Bill Dubuque
Jan 26 at 3:24
add a comment |
$begingroup$
Hint: Let $x_n = 3^{2n+3}+40n-27$. Compute $x_{n+1}-x_{n} = 8 (3^{2 n + 3} + 5) bmod 64$.
$endgroup$
– lhf
Jan 26 at 1:19
1
$begingroup$
@lhf Easier to use $ x_{n+1}-color{#c00}9,x_n = 64(4-5n). $ This works generally - see this answer in the dupe.
$endgroup$
– Bill Dubuque
Jan 26 at 3:24
$begingroup$
Hint: Let $x_n = 3^{2n+3}+40n-27$. Compute $x_{n+1}-x_{n} = 8 (3^{2 n + 3} + 5) bmod 64$.
$endgroup$
– lhf
Jan 26 at 1:19
$begingroup$
Hint: Let $x_n = 3^{2n+3}+40n-27$. Compute $x_{n+1}-x_{n} = 8 (3^{2 n + 3} + 5) bmod 64$.
$endgroup$
– lhf
Jan 26 at 1:19
1
1
$begingroup$
@lhf Easier to use $ x_{n+1}-color{#c00}9,x_n = 64(4-5n). $ This works generally - see this answer in the dupe.
$endgroup$
– Bill Dubuque
Jan 26 at 3:24
$begingroup$
@lhf Easier to use $ x_{n+1}-color{#c00}9,x_n = 64(4-5n). $ This works generally - see this answer in the dupe.
$endgroup$
– Bill Dubuque
Jan 26 at 3:24
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We find that
$$
frac{3^{2n+3}+40n-27}{8}=frac{27(9^n-1)+40n}{8}=27(9^{n-1}+9^{n-2}+cdots+1)+5n.
$$ And also
$$
27(9^{n-1}+9^{n-2}+cdots+1)+5nequiv 27(1+1+cdots +1)+5nequiv32nequiv 0 ;text{(mod};8).
$$ Therefore $64 ;|; 3^{2n+3}+40n-27$ for all $nge 1$.
$endgroup$
$begingroup$
i understand, so your answer is reducible to say "if is divisible by 8, too is divisible by 8^2" ?
$endgroup$
– Richard Kingston
Jan 26 at 0:10
$begingroup$
@RichardKingston Basically, yes. If $8 | N$ and $8 | (N/8)$, then it holds $64 | N$ .
$endgroup$
– Song
Jan 26 at 0:12
add a comment |
$begingroup$
Use induction and modular arithmetic: suppose that, for some $n$, $3^{2n+3}+40n-27equiv 0mod64$. We have to show that
$$3^{2n+5}+40(n+1)-27=9cdot3^{2n+3}+40n+13equiv 0mod64.$$
The inductive hypothesis can be rewritten as
$$3^{2n+3}equiv -40n +27mod64,$$
so that
$$9cdot3^{2n+3}+40n+13equiv-360n+243+40m+13=-320n+256equiv 0mod 64. $$
$endgroup$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We find that
$$
frac{3^{2n+3}+40n-27}{8}=frac{27(9^n-1)+40n}{8}=27(9^{n-1}+9^{n-2}+cdots+1)+5n.
$$ And also
$$
27(9^{n-1}+9^{n-2}+cdots+1)+5nequiv 27(1+1+cdots +1)+5nequiv32nequiv 0 ;text{(mod};8).
$$ Therefore $64 ;|; 3^{2n+3}+40n-27$ for all $nge 1$.
$endgroup$
$begingroup$
i understand, so your answer is reducible to say "if is divisible by 8, too is divisible by 8^2" ?
$endgroup$
– Richard Kingston
Jan 26 at 0:10
$begingroup$
@RichardKingston Basically, yes. If $8 | N$ and $8 | (N/8)$, then it holds $64 | N$ .
$endgroup$
– Song
Jan 26 at 0:12
add a comment |
$begingroup$
We find that
$$
frac{3^{2n+3}+40n-27}{8}=frac{27(9^n-1)+40n}{8}=27(9^{n-1}+9^{n-2}+cdots+1)+5n.
$$ And also
$$
27(9^{n-1}+9^{n-2}+cdots+1)+5nequiv 27(1+1+cdots +1)+5nequiv32nequiv 0 ;text{(mod};8).
$$ Therefore $64 ;|; 3^{2n+3}+40n-27$ for all $nge 1$.
$endgroup$
$begingroup$
i understand, so your answer is reducible to say "if is divisible by 8, too is divisible by 8^2" ?
$endgroup$
– Richard Kingston
Jan 26 at 0:10
$begingroup$
@RichardKingston Basically, yes. If $8 | N$ and $8 | (N/8)$, then it holds $64 | N$ .
$endgroup$
– Song
Jan 26 at 0:12
add a comment |
$begingroup$
We find that
$$
frac{3^{2n+3}+40n-27}{8}=frac{27(9^n-1)+40n}{8}=27(9^{n-1}+9^{n-2}+cdots+1)+5n.
$$ And also
$$
27(9^{n-1}+9^{n-2}+cdots+1)+5nequiv 27(1+1+cdots +1)+5nequiv32nequiv 0 ;text{(mod};8).
$$ Therefore $64 ;|; 3^{2n+3}+40n-27$ for all $nge 1$.
$endgroup$
We find that
$$
frac{3^{2n+3}+40n-27}{8}=frac{27(9^n-1)+40n}{8}=27(9^{n-1}+9^{n-2}+cdots+1)+5n.
$$ And also
$$
27(9^{n-1}+9^{n-2}+cdots+1)+5nequiv 27(1+1+cdots +1)+5nequiv32nequiv 0 ;text{(mod};8).
$$ Therefore $64 ;|; 3^{2n+3}+40n-27$ for all $nge 1$.
answered Jan 26 at 0:08
SongSong
17.4k21246
17.4k21246
$begingroup$
i understand, so your answer is reducible to say "if is divisible by 8, too is divisible by 8^2" ?
$endgroup$
– Richard Kingston
Jan 26 at 0:10
$begingroup$
@RichardKingston Basically, yes. If $8 | N$ and $8 | (N/8)$, then it holds $64 | N$ .
$endgroup$
– Song
Jan 26 at 0:12
add a comment |
$begingroup$
i understand, so your answer is reducible to say "if is divisible by 8, too is divisible by 8^2" ?
$endgroup$
– Richard Kingston
Jan 26 at 0:10
$begingroup$
@RichardKingston Basically, yes. If $8 | N$ and $8 | (N/8)$, then it holds $64 | N$ .
$endgroup$
– Song
Jan 26 at 0:12
$begingroup$
i understand, so your answer is reducible to say "if is divisible by 8, too is divisible by 8^2" ?
$endgroup$
– Richard Kingston
Jan 26 at 0:10
$begingroup$
i understand, so your answer is reducible to say "if is divisible by 8, too is divisible by 8^2" ?
$endgroup$
– Richard Kingston
Jan 26 at 0:10
$begingroup$
@RichardKingston Basically, yes. If $8 | N$ and $8 | (N/8)$, then it holds $64 | N$ .
$endgroup$
– Song
Jan 26 at 0:12
$begingroup$
@RichardKingston Basically, yes. If $8 | N$ and $8 | (N/8)$, then it holds $64 | N$ .
$endgroup$
– Song
Jan 26 at 0:12
add a comment |
$begingroup$
Use induction and modular arithmetic: suppose that, for some $n$, $3^{2n+3}+40n-27equiv 0mod64$. We have to show that
$$3^{2n+5}+40(n+1)-27=9cdot3^{2n+3}+40n+13equiv 0mod64.$$
The inductive hypothesis can be rewritten as
$$3^{2n+3}equiv -40n +27mod64,$$
so that
$$9cdot3^{2n+3}+40n+13equiv-360n+243+40m+13=-320n+256equiv 0mod 64. $$
$endgroup$
add a comment |
$begingroup$
Use induction and modular arithmetic: suppose that, for some $n$, $3^{2n+3}+40n-27equiv 0mod64$. We have to show that
$$3^{2n+5}+40(n+1)-27=9cdot3^{2n+3}+40n+13equiv 0mod64.$$
The inductive hypothesis can be rewritten as
$$3^{2n+3}equiv -40n +27mod64,$$
so that
$$9cdot3^{2n+3}+40n+13equiv-360n+243+40m+13=-320n+256equiv 0mod 64. $$
$endgroup$
add a comment |
$begingroup$
Use induction and modular arithmetic: suppose that, for some $n$, $3^{2n+3}+40n-27equiv 0mod64$. We have to show that
$$3^{2n+5}+40(n+1)-27=9cdot3^{2n+3}+40n+13equiv 0mod64.$$
The inductive hypothesis can be rewritten as
$$3^{2n+3}equiv -40n +27mod64,$$
so that
$$9cdot3^{2n+3}+40n+13equiv-360n+243+40m+13=-320n+256equiv 0mod 64. $$
$endgroup$
Use induction and modular arithmetic: suppose that, for some $n$, $3^{2n+3}+40n-27equiv 0mod64$. We have to show that
$$3^{2n+5}+40(n+1)-27=9cdot3^{2n+3}+40n+13equiv 0mod64.$$
The inductive hypothesis can be rewritten as
$$3^{2n+3}equiv -40n +27mod64,$$
so that
$$9cdot3^{2n+3}+40n+13equiv-360n+243+40m+13=-320n+256equiv 0mod 64. $$
answered Jan 26 at 0:22
BernardBernard
122k741116
122k741116
add a comment |
add a comment |
$begingroup$
Hint: Let $x_n = 3^{2n+3}+40n-27$. Compute $x_{n+1}-x_{n} = 8 (3^{2 n + 3} + 5) bmod 64$.
$endgroup$
– lhf
Jan 26 at 1:19
1
$begingroup$
@lhf Easier to use $ x_{n+1}-color{#c00}9,x_n = 64(4-5n). $ This works generally - see this answer in the dupe.
$endgroup$
– Bill Dubuque
Jan 26 at 3:24