Flow Decomposition theorem explanation












0














I have a question about Flow Decomposition Theorem.



In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.



My concern is not to messing up the cost of a flow with the value of a flow.



So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$










share|cite|improve this question







New contributor




Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
    – Pink Panther
    2 days ago












  • @PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
    – Alexander.van.Molter
    2 days ago












  • A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
    – Alex Ravsky
    yesterday


















0














I have a question about Flow Decomposition Theorem.



In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.



My concern is not to messing up the cost of a flow with the value of a flow.



So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$










share|cite|improve this question







New contributor




Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
    – Pink Panther
    2 days ago












  • @PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
    – Alexander.van.Molter
    2 days ago












  • A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
    – Alex Ravsky
    yesterday
















0












0








0







I have a question about Flow Decomposition Theorem.



In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.



My concern is not to messing up the cost of a flow with the value of a flow.



So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$










share|cite|improve this question







New contributor




Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I have a question about Flow Decomposition Theorem.



In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.



My concern is not to messing up the cost of a flow with the value of a flow.



So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$







graph-theory network-flow






share|cite|improve this question







New contributor




Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Alexander.van.MolterAlexander.van.Molter

1




1




New contributor




Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Alexander.van.Molter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
    – Pink Panther
    2 days ago












  • @PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
    – Alexander.van.Molter
    2 days ago












  • A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
    – Alex Ravsky
    yesterday




















  • in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
    – Pink Panther
    2 days ago












  • @PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
    – Alexander.van.Molter
    2 days ago












  • A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
    – Alex Ravsky
    yesterday


















in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago






in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago














@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago






@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago














A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday






A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062710%2fflow-decomposition-theorem-explanation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes








Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.













Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.












Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062710%2fflow-decomposition-theorem-explanation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?