Flow Decomposition theorem explanation
I have a question about Flow Decomposition Theorem.
In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.
My concern is not to messing up the cost of a flow with the value of a flow.
So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$
graph-theory network-flow
New contributor
add a comment |
I have a question about Flow Decomposition Theorem.
In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.
My concern is not to messing up the cost of a flow with the value of a flow.
So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$
graph-theory network-flow
New contributor
in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago
@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago
A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday
add a comment |
I have a question about Flow Decomposition Theorem.
In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.
My concern is not to messing up the cost of a flow with the value of a flow.
So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$
graph-theory network-flow
New contributor
I have a question about Flow Decomposition Theorem.
In the theorem say that a flow $f$ can be decompose in $k$ flows, $f_1, f_2 ... f_k$, and the cost of the flow $f$ is equal to the sum of the costs of the flows $f_i$.
My concern is not to messing up the cost of a flow with the value of a flow.
So, I want to know if is correct how I write the formula for this property:
$$f = sum_{i=1}^{k} f_i$$
graph-theory network-flow
graph-theory network-flow
New contributor
New contributor
New contributor
asked 2 days ago
Alexander.van.MolterAlexander.van.Molter
1
1
New contributor
New contributor
in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago
@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago
A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday
add a comment |
in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago
@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago
A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday
in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago
in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago
@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago
@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago
A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday
A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062710%2fflow-decomposition-theorem-explanation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.
Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.
Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.
Alexander.van.Molter is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062710%2fflow-decomposition-theorem-explanation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
in this script theory.stanford.edu/~trevisan/cs261/lecture11.pdf they use the notation $operatorname{cost}(f)$ for the cost of a flow (see page 3)
– Pink Panther
2 days ago
@PinkPanther and what I wrote what is suppose to mean, because I found this notation somewhere, and I don't know what wants to say. First, I think that is the cost, but now is confusing. How you can sum some flows to determine another one?
– Alexander.van.Molter
2 days ago
A flow is a function from the set $E$ of edges to $Bbb R_{ge 0}$, so we can consider a natural sum $f_1+f_2$ of flows $f_1$ and $f_2$ by putting $(f_1+f_2)(e)=f_1(e)+f_2(e)$ for each $ein E$.
– Alex Ravsky
yesterday