Why is sinh called “sinus hyperbolicus” despite being just a regular e function?
$begingroup$
What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.
The only similarity I can find is that their exponential representation looks similar.
$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$
$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$
trigonometry complex-numbers hyperbolic-functions
$endgroup$
add a comment |
$begingroup$
What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.
The only similarity I can find is that their exponential representation looks similar.
$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$
$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$
trigonometry complex-numbers hyperbolic-functions
$endgroup$
2
$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39
2
$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43
2
$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54
1
$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22
$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05
add a comment |
$begingroup$
What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.
The only similarity I can find is that their exponential representation looks similar.
$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$
$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$
trigonometry complex-numbers hyperbolic-functions
$endgroup$
What does the sinus hyperbolicus have to do with the sinus? Their graphs do not look alike at all.
The only similarity I can find is that their exponential representation looks similar.
$sin(x) = frac{1}{2i}(e^{ix}-e^{-ix})$
$sinh(x) = frac{1}{2}(e^{x}-e^{-x})$
trigonometry complex-numbers hyperbolic-functions
trigonometry complex-numbers hyperbolic-functions
asked Jan 16 at 16:37
Sebastian WalkerSebastian Walker
262
262
2
$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39
2
$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43
2
$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54
1
$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22
$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05
add a comment |
2
$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39
2
$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43
2
$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54
1
$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22
$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05
2
2
$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39
$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39
2
2
$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43
$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43
2
2
$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54
$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54
1
1
$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22
$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22
$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05
$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075950%2fwhy-is-sinh-called-sinus-hyperbolicus-despite-being-just-a-regular-e-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075950%2fwhy-is-sinh-called-sinus-hyperbolicus-despite-being-just-a-regular-e-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Also note the relation $$ isin(x) = sinh(ix). $$
$endgroup$
– MisterRiemann
Jan 16 at 16:39
2
$begingroup$
See Hyperbolic function.
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:43
2
$begingroup$
See Vincenzo Riccati, Opuscula physico-mathematica, Vol.1 (1757) page 70 : "ita in hyperbola sumemus sinus et cosinus logarithmorum, quos sinus et cosinus hyperbolicos appellabimus."
$endgroup$
– Mauro ALLEGRANZA
Jan 16 at 16:54
1
$begingroup$
Well, I don’t know whether this helps, but the standard formulas for spherical trigonometry are mirrored by formulas in hyperbolic trigonometry by the replacement of the sine and cosine by the corresponding hyperbolic functions, when it’s a matter of side lengths. For instance, the spherical Pythagorean formula is $cos c=cos acos b$, while the corresponding hyperbolic formula is $cosh c=cosh acosh b$.
$endgroup$
– Lubin
Jan 16 at 20:22
$begingroup$
See "Geometric construction of hyperbolic trigonometric functions". In particular, my answer.
$endgroup$
– Blue
Jan 16 at 23:05