Number of solutions to a given equation
$begingroup$
Any hints on how to proceed further?
trigonometry
$endgroup$
add a comment |
$begingroup$
Any hints on how to proceed further?
trigonometry
$endgroup$
$begingroup$
Write $y=2^{(sin{x})^2}$, you want the number of solutions to $y(x)+10/y(x)=7$. So I suggest that you find the solutions to $y+10/y=7$ and then find out how many $x$ give those values.
$endgroup$
– Mindlack
Jan 21 at 17:19
add a comment |
$begingroup$
Any hints on how to proceed further?
trigonometry
$endgroup$
Any hints on how to proceed further?
trigonometry
trigonometry
asked Jan 21 at 17:16
Sameer ThakurSameer Thakur
305
305
$begingroup$
Write $y=2^{(sin{x})^2}$, you want the number of solutions to $y(x)+10/y(x)=7$. So I suggest that you find the solutions to $y+10/y=7$ and then find out how many $x$ give those values.
$endgroup$
– Mindlack
Jan 21 at 17:19
add a comment |
$begingroup$
Write $y=2^{(sin{x})^2}$, you want the number of solutions to $y(x)+10/y(x)=7$. So I suggest that you find the solutions to $y+10/y=7$ and then find out how many $x$ give those values.
$endgroup$
– Mindlack
Jan 21 at 17:19
$begingroup$
Write $y=2^{(sin{x})^2}$, you want the number of solutions to $y(x)+10/y(x)=7$. So I suggest that you find the solutions to $y+10/y=7$ and then find out how many $x$ give those values.
$endgroup$
– Mindlack
Jan 21 at 17:19
$begingroup$
Write $y=2^{(sin{x})^2}$, you want the number of solutions to $y(x)+10/y(x)=7$. So I suggest that you find the solutions to $y+10/y=7$ and then find out how many $x$ give those values.
$endgroup$
– Mindlack
Jan 21 at 17:19
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Put $;t=sin x;$, then the equation becomes
$$2^{t^2}+5cdot 2^{1-t^2}=7iff2^{2t^2}-7cdot 2^{t^2}+10=0$$
Put now $;y:=2^{t^2};$ and get the quadratic
$$y^2-7y+10=0implies (y-5)(y-2)=0impliesbegin{cases}5=y_1=2^{t^2}implies t^2=frac{log5}{log2}...etc.\{}\
2=y_2=2^{t^2}implies t^2=1...etc.end{cases}$$
Observe that $;t=sin x;$ and thus only one of the above two options for $;t^2;$ is possible...end now the exercise.
$endgroup$
add a comment |
$begingroup$
Hint: try with $$sin^2x+cos^2x =1$$
Say $t= sin^2x $ and then $cos^2x =1-t$...
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082116%2fnumber-of-solutions-to-a-given-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Put $;t=sin x;$, then the equation becomes
$$2^{t^2}+5cdot 2^{1-t^2}=7iff2^{2t^2}-7cdot 2^{t^2}+10=0$$
Put now $;y:=2^{t^2};$ and get the quadratic
$$y^2-7y+10=0implies (y-5)(y-2)=0impliesbegin{cases}5=y_1=2^{t^2}implies t^2=frac{log5}{log2}...etc.\{}\
2=y_2=2^{t^2}implies t^2=1...etc.end{cases}$$
Observe that $;t=sin x;$ and thus only one of the above two options for $;t^2;$ is possible...end now the exercise.
$endgroup$
add a comment |
$begingroup$
Put $;t=sin x;$, then the equation becomes
$$2^{t^2}+5cdot 2^{1-t^2}=7iff2^{2t^2}-7cdot 2^{t^2}+10=0$$
Put now $;y:=2^{t^2};$ and get the quadratic
$$y^2-7y+10=0implies (y-5)(y-2)=0impliesbegin{cases}5=y_1=2^{t^2}implies t^2=frac{log5}{log2}...etc.\{}\
2=y_2=2^{t^2}implies t^2=1...etc.end{cases}$$
Observe that $;t=sin x;$ and thus only one of the above two options for $;t^2;$ is possible...end now the exercise.
$endgroup$
add a comment |
$begingroup$
Put $;t=sin x;$, then the equation becomes
$$2^{t^2}+5cdot 2^{1-t^2}=7iff2^{2t^2}-7cdot 2^{t^2}+10=0$$
Put now $;y:=2^{t^2};$ and get the quadratic
$$y^2-7y+10=0implies (y-5)(y-2)=0impliesbegin{cases}5=y_1=2^{t^2}implies t^2=frac{log5}{log2}...etc.\{}\
2=y_2=2^{t^2}implies t^2=1...etc.end{cases}$$
Observe that $;t=sin x;$ and thus only one of the above two options for $;t^2;$ is possible...end now the exercise.
$endgroup$
Put $;t=sin x;$, then the equation becomes
$$2^{t^2}+5cdot 2^{1-t^2}=7iff2^{2t^2}-7cdot 2^{t^2}+10=0$$
Put now $;y:=2^{t^2};$ and get the quadratic
$$y^2-7y+10=0implies (y-5)(y-2)=0impliesbegin{cases}5=y_1=2^{t^2}implies t^2=frac{log5}{log2}...etc.\{}\
2=y_2=2^{t^2}implies t^2=1...etc.end{cases}$$
Observe that $;t=sin x;$ and thus only one of the above two options for $;t^2;$ is possible...end now the exercise.
answered Jan 21 at 17:33
DonAntonioDonAntonio
179k1494230
179k1494230
add a comment |
add a comment |
$begingroup$
Hint: try with $$sin^2x+cos^2x =1$$
Say $t= sin^2x $ and then $cos^2x =1-t$...
$endgroup$
add a comment |
$begingroup$
Hint: try with $$sin^2x+cos^2x =1$$
Say $t= sin^2x $ and then $cos^2x =1-t$...
$endgroup$
add a comment |
$begingroup$
Hint: try with $$sin^2x+cos^2x =1$$
Say $t= sin^2x $ and then $cos^2x =1-t$...
$endgroup$
Hint: try with $$sin^2x+cos^2x =1$$
Say $t= sin^2x $ and then $cos^2x =1-t$...
answered Jan 21 at 17:18
greedoidgreedoid
44.2k1155110
44.2k1155110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082116%2fnumber-of-solutions-to-a-given-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Write $y=2^{(sin{x})^2}$, you want the number of solutions to $y(x)+10/y(x)=7$. So I suggest that you find the solutions to $y+10/y=7$ and then find out how many $x$ give those values.
$endgroup$
– Mindlack
Jan 21 at 17:19