How to prove a trigonometric identity $tan(A)=frac{sin2A}{1+cos 2A}$
$begingroup$
Show that
$$
tan(A)=frac{sin2A}{1+cos 2A}
$$
I've tried a few methods, and it stumped my teacher.
trigonometry
$endgroup$
add a comment |
$begingroup$
Show that
$$
tan(A)=frac{sin2A}{1+cos 2A}
$$
I've tried a few methods, and it stumped my teacher.
trigonometry
$endgroup$
1
$begingroup$
Failure to prove is not surprising. It is quite false. For example, take $A=pi/4$ ($45$ degrees).
$endgroup$
– André Nicolas
Mar 15 '12 at 23:48
$begingroup$
I think you want $cos(2A)$ there...
$endgroup$
– David Mitra
Mar 15 '12 at 23:53
$begingroup$
This is not a valid identity: try $A=pi/4$ for example.
$endgroup$
– Shane O Rourke
Mar 15 '12 at 23:54
add a comment |
$begingroup$
Show that
$$
tan(A)=frac{sin2A}{1+cos 2A}
$$
I've tried a few methods, and it stumped my teacher.
trigonometry
$endgroup$
Show that
$$
tan(A)=frac{sin2A}{1+cos 2A}
$$
I've tried a few methods, and it stumped my teacher.
trigonometry
trigonometry
edited Jan 21 at 14:26
Martin Sleziak
44.7k10119272
44.7k10119272
asked Mar 15 '12 at 23:44
Rollo Montgomery Konig-BrockRollo Montgomery Konig-Brock
646
646
1
$begingroup$
Failure to prove is not surprising. It is quite false. For example, take $A=pi/4$ ($45$ degrees).
$endgroup$
– André Nicolas
Mar 15 '12 at 23:48
$begingroup$
I think you want $cos(2A)$ there...
$endgroup$
– David Mitra
Mar 15 '12 at 23:53
$begingroup$
This is not a valid identity: try $A=pi/4$ for example.
$endgroup$
– Shane O Rourke
Mar 15 '12 at 23:54
add a comment |
1
$begingroup$
Failure to prove is not surprising. It is quite false. For example, take $A=pi/4$ ($45$ degrees).
$endgroup$
– André Nicolas
Mar 15 '12 at 23:48
$begingroup$
I think you want $cos(2A)$ there...
$endgroup$
– David Mitra
Mar 15 '12 at 23:53
$begingroup$
This is not a valid identity: try $A=pi/4$ for example.
$endgroup$
– Shane O Rourke
Mar 15 '12 at 23:54
1
1
$begingroup$
Failure to prove is not surprising. It is quite false. For example, take $A=pi/4$ ($45$ degrees).
$endgroup$
– André Nicolas
Mar 15 '12 at 23:48
$begingroup$
Failure to prove is not surprising. It is quite false. For example, take $A=pi/4$ ($45$ degrees).
$endgroup$
– André Nicolas
Mar 15 '12 at 23:48
$begingroup$
I think you want $cos(2A)$ there...
$endgroup$
– David Mitra
Mar 15 '12 at 23:53
$begingroup$
I think you want $cos(2A)$ there...
$endgroup$
– David Mitra
Mar 15 '12 at 23:53
$begingroup$
This is not a valid identity: try $A=pi/4$ for example.
$endgroup$
– Shane O Rourke
Mar 15 '12 at 23:54
$begingroup$
This is not a valid identity: try $A=pi/4$ for example.
$endgroup$
– Shane O Rourke
Mar 15 '12 at 23:54
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Proof without words: $tan(A)=dfrac{color{red}{sin(2A)}}{color{blue}{1}+color{green}{cos(2A)}}$
$hspace{4cm}$
$endgroup$
3
$begingroup$
I've never seen anyone prove a trig identity like that, but they should!
$endgroup$
– The Substitute
Mar 29 '12 at 23:54
add a comment |
$begingroup$
The given equality is false. Set $A = pi/2$. (Note: this applied to an earlier version of the problem).
Perhaps what you meant was
$$ tan frac{A}{2} = frac{sin A}{1 + cos A}$$
or
$$ tan A = frac{sin 2A}{1 + cos 2A}$$
which is true, by using the half/double angle formulas.
$$frac{sin A}{1 + cos A} = frac{ 2 sin A/2 cos A/2}{2 cos^2 A/2} = tan A/2$$
$endgroup$
$begingroup$
This is one of my favorite identities. It is the basis for one form of $operatorname{atan2}(x,y)=2operatorname{atan}left(dfrac{y}{r+x}right)$ which is useful if you have to compute $r=sqrt{x^2+y^2}$ anyway. It also plays a significant role in the stereographic projection. (+1)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:40
$begingroup$
Nice proof, too :-)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:48
add a comment |
$begingroup$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = 2 cos^2A - 1$$
Substitute these identities and you will get $tan A$.
$endgroup$
1
$begingroup$
duplicate?
$endgroup$
– draks ...
Mar 29 '12 at 7:55
1
$begingroup$
I am downvoting this answer. BTW, you may want to look at the TeX edit I have made by clicking on the time stamp above my name.
$endgroup$
– user21436
Mar 29 '12 at 22:28
add a comment |
$begingroup$
We need to prove that:
$$frac{sin(2A)}{1+cos(2A)}=tan(A)$$
Let's do LHS-RHS to prove it. I will try to make the left side equal the right side.
$$frac{sin(2A)}{1+cos(2A)}$$
Using double angle identites for both sine and cosine:
$$frac{2sin(A)cos(A)}{1+2cos^2(A)-1}$$
How nice. The $1$ and $-1$ in the denominator cancel out.
$$frac{2sin(A)cos(A)}{2cos^2(A)}$$
Cancelling out the $cos(A)$ in the numerator and the denominator yields:
$$frac{2sin(A)}{2cos(A)}$$
We can also cancel out the $2$ in the numerator and the denominator.
$$frac{sin(A)}{cos(A)}$$
$$=tan(A)$$
$$text{LHS=RHS}$$
$$displaystyle boxed{therefore dfrac{sin(2A)}{1+cos(2A)}=tan(A)}$$
$endgroup$
add a comment |
$begingroup$
First, lets develop a couple of identities.
Given that $sin 2A = 2sin Acos A$, and $cos 2A = cos^2A - sin^2 A$ we have
$$begin{array}{lll}
tan 2A &=& frac{sin 2A}{cos 2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{2tan A}{1-tan^2A}
end{array}$$
Similarly, we have
$$begin{array}{lll}
sec 2A &=& frac{1}{cos 2A}\
&=&frac{1}{cos^2 A-sin^2A}\
&=&frac{1}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{sec^2 A}{1-tan^2A}
end{array}$$
But sometimes it is just as easy to represent these identities as
$$begin{array}{lll}
(1-tan^2 A)sec 2A &=& sec^2 A\
(1-tan^2 A)tan 2A &=& 2tan A
end{array}$$
Applying these identities to the problem at hand we have
$$begin{array}{lll}
frac{sin 2A}{1+cos 2A}&=& frac{sin 2A}{1+cos 2A}cdotfrac{frac{1}{cos 2A}}{frac{1}{cos 2A}}\
&=& frac{tan 2A}{sec 2A +1}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)(sec 2A +1)}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)sec 2A +(1-tan^2 A)}\
&=& frac{2tan A}{sec^2 A +(1-tan^2 A)}\
&=& frac{2tan A}{(tan^2 A+1) +(1-tan^2 A)}\
&=& frac{2tan A}{2}\
&=& tan A\
end{array}$$
discalimer: I like JChau's answer better :)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f120704%2fhow-to-prove-a-trigonometric-identity-tana-frac-sin2a1-cos-2a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Proof without words: $tan(A)=dfrac{color{red}{sin(2A)}}{color{blue}{1}+color{green}{cos(2A)}}$
$hspace{4cm}$
$endgroup$
3
$begingroup$
I've never seen anyone prove a trig identity like that, but they should!
$endgroup$
– The Substitute
Mar 29 '12 at 23:54
add a comment |
$begingroup$
Proof without words: $tan(A)=dfrac{color{red}{sin(2A)}}{color{blue}{1}+color{green}{cos(2A)}}$
$hspace{4cm}$
$endgroup$
3
$begingroup$
I've never seen anyone prove a trig identity like that, but they should!
$endgroup$
– The Substitute
Mar 29 '12 at 23:54
add a comment |
$begingroup$
Proof without words: $tan(A)=dfrac{color{red}{sin(2A)}}{color{blue}{1}+color{green}{cos(2A)}}$
$hspace{4cm}$
$endgroup$
Proof without words: $tan(A)=dfrac{color{red}{sin(2A)}}{color{blue}{1}+color{green}{cos(2A)}}$
$hspace{4cm}$
answered Mar 29 '12 at 22:23
robjohn♦robjohn
268k27308634
268k27308634
3
$begingroup$
I've never seen anyone prove a trig identity like that, but they should!
$endgroup$
– The Substitute
Mar 29 '12 at 23:54
add a comment |
3
$begingroup$
I've never seen anyone prove a trig identity like that, but they should!
$endgroup$
– The Substitute
Mar 29 '12 at 23:54
3
3
$begingroup$
I've never seen anyone prove a trig identity like that, but they should!
$endgroup$
– The Substitute
Mar 29 '12 at 23:54
$begingroup$
I've never seen anyone prove a trig identity like that, but they should!
$endgroup$
– The Substitute
Mar 29 '12 at 23:54
add a comment |
$begingroup$
The given equality is false. Set $A = pi/2$. (Note: this applied to an earlier version of the problem).
Perhaps what you meant was
$$ tan frac{A}{2} = frac{sin A}{1 + cos A}$$
or
$$ tan A = frac{sin 2A}{1 + cos 2A}$$
which is true, by using the half/double angle formulas.
$$frac{sin A}{1 + cos A} = frac{ 2 sin A/2 cos A/2}{2 cos^2 A/2} = tan A/2$$
$endgroup$
$begingroup$
This is one of my favorite identities. It is the basis for one form of $operatorname{atan2}(x,y)=2operatorname{atan}left(dfrac{y}{r+x}right)$ which is useful if you have to compute $r=sqrt{x^2+y^2}$ anyway. It also plays a significant role in the stereographic projection. (+1)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:40
$begingroup$
Nice proof, too :-)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:48
add a comment |
$begingroup$
The given equality is false. Set $A = pi/2$. (Note: this applied to an earlier version of the problem).
Perhaps what you meant was
$$ tan frac{A}{2} = frac{sin A}{1 + cos A}$$
or
$$ tan A = frac{sin 2A}{1 + cos 2A}$$
which is true, by using the half/double angle formulas.
$$frac{sin A}{1 + cos A} = frac{ 2 sin A/2 cos A/2}{2 cos^2 A/2} = tan A/2$$
$endgroup$
$begingroup$
This is one of my favorite identities. It is the basis for one form of $operatorname{atan2}(x,y)=2operatorname{atan}left(dfrac{y}{r+x}right)$ which is useful if you have to compute $r=sqrt{x^2+y^2}$ anyway. It also plays a significant role in the stereographic projection. (+1)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:40
$begingroup$
Nice proof, too :-)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:48
add a comment |
$begingroup$
The given equality is false. Set $A = pi/2$. (Note: this applied to an earlier version of the problem).
Perhaps what you meant was
$$ tan frac{A}{2} = frac{sin A}{1 + cos A}$$
or
$$ tan A = frac{sin 2A}{1 + cos 2A}$$
which is true, by using the half/double angle formulas.
$$frac{sin A}{1 + cos A} = frac{ 2 sin A/2 cos A/2}{2 cos^2 A/2} = tan A/2$$
$endgroup$
The given equality is false. Set $A = pi/2$. (Note: this applied to an earlier version of the problem).
Perhaps what you meant was
$$ tan frac{A}{2} = frac{sin A}{1 + cos A}$$
or
$$ tan A = frac{sin 2A}{1 + cos 2A}$$
which is true, by using the half/double angle formulas.
$$frac{sin A}{1 + cos A} = frac{ 2 sin A/2 cos A/2}{2 cos^2 A/2} = tan A/2$$
edited Mar 29 '12 at 20:52
answered Mar 15 '12 at 23:51
AryabhataAryabhata
70k6156246
70k6156246
$begingroup$
This is one of my favorite identities. It is the basis for one form of $operatorname{atan2}(x,y)=2operatorname{atan}left(dfrac{y}{r+x}right)$ which is useful if you have to compute $r=sqrt{x^2+y^2}$ anyway. It also plays a significant role in the stereographic projection. (+1)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:40
$begingroup$
Nice proof, too :-)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:48
add a comment |
$begingroup$
This is one of my favorite identities. It is the basis for one form of $operatorname{atan2}(x,y)=2operatorname{atan}left(dfrac{y}{r+x}right)$ which is useful if you have to compute $r=sqrt{x^2+y^2}$ anyway. It also plays a significant role in the stereographic projection. (+1)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:40
$begingroup$
Nice proof, too :-)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:48
$begingroup$
This is one of my favorite identities. It is the basis for one form of $operatorname{atan2}(x,y)=2operatorname{atan}left(dfrac{y}{r+x}right)$ which is useful if you have to compute $r=sqrt{x^2+y^2}$ anyway. It also plays a significant role in the stereographic projection. (+1)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:40
$begingroup$
This is one of my favorite identities. It is the basis for one form of $operatorname{atan2}(x,y)=2operatorname{atan}left(dfrac{y}{r+x}right)$ which is useful if you have to compute $r=sqrt{x^2+y^2}$ anyway. It also plays a significant role in the stereographic projection. (+1)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:40
$begingroup$
Nice proof, too :-)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:48
$begingroup$
Nice proof, too :-)
$endgroup$
– robjohn♦
Mar 29 '12 at 22:48
add a comment |
$begingroup$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = 2 cos^2A - 1$$
Substitute these identities and you will get $tan A$.
$endgroup$
1
$begingroup$
duplicate?
$endgroup$
– draks ...
Mar 29 '12 at 7:55
1
$begingroup$
I am downvoting this answer. BTW, you may want to look at the TeX edit I have made by clicking on the time stamp above my name.
$endgroup$
– user21436
Mar 29 '12 at 22:28
add a comment |
$begingroup$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = 2 cos^2A - 1$$
Substitute these identities and you will get $tan A$.
$endgroup$
1
$begingroup$
duplicate?
$endgroup$
– draks ...
Mar 29 '12 at 7:55
1
$begingroup$
I am downvoting this answer. BTW, you may want to look at the TeX edit I have made by clicking on the time stamp above my name.
$endgroup$
– user21436
Mar 29 '12 at 22:28
add a comment |
$begingroup$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = 2 cos^2A - 1$$
Substitute these identities and you will get $tan A$.
$endgroup$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = 2 cos^2A - 1$$
Substitute these identities and you will get $tan A$.
edited Mar 29 '12 at 19:21
user21436
answered Mar 29 '12 at 7:48
RohanRohan
945
945
1
$begingroup$
duplicate?
$endgroup$
– draks ...
Mar 29 '12 at 7:55
1
$begingroup$
I am downvoting this answer. BTW, you may want to look at the TeX edit I have made by clicking on the time stamp above my name.
$endgroup$
– user21436
Mar 29 '12 at 22:28
add a comment |
1
$begingroup$
duplicate?
$endgroup$
– draks ...
Mar 29 '12 at 7:55
1
$begingroup$
I am downvoting this answer. BTW, you may want to look at the TeX edit I have made by clicking on the time stamp above my name.
$endgroup$
– user21436
Mar 29 '12 at 22:28
1
1
$begingroup$
duplicate?
$endgroup$
– draks ...
Mar 29 '12 at 7:55
$begingroup$
duplicate?
$endgroup$
– draks ...
Mar 29 '12 at 7:55
1
1
$begingroup$
I am downvoting this answer. BTW, you may want to look at the TeX edit I have made by clicking on the time stamp above my name.
$endgroup$
– user21436
Mar 29 '12 at 22:28
$begingroup$
I am downvoting this answer. BTW, you may want to look at the TeX edit I have made by clicking on the time stamp above my name.
$endgroup$
– user21436
Mar 29 '12 at 22:28
add a comment |
$begingroup$
We need to prove that:
$$frac{sin(2A)}{1+cos(2A)}=tan(A)$$
Let's do LHS-RHS to prove it. I will try to make the left side equal the right side.
$$frac{sin(2A)}{1+cos(2A)}$$
Using double angle identites for both sine and cosine:
$$frac{2sin(A)cos(A)}{1+2cos^2(A)-1}$$
How nice. The $1$ and $-1$ in the denominator cancel out.
$$frac{2sin(A)cos(A)}{2cos^2(A)}$$
Cancelling out the $cos(A)$ in the numerator and the denominator yields:
$$frac{2sin(A)}{2cos(A)}$$
We can also cancel out the $2$ in the numerator and the denominator.
$$frac{sin(A)}{cos(A)}$$
$$=tan(A)$$
$$text{LHS=RHS}$$
$$displaystyle boxed{therefore dfrac{sin(2A)}{1+cos(2A)}=tan(A)}$$
$endgroup$
add a comment |
$begingroup$
We need to prove that:
$$frac{sin(2A)}{1+cos(2A)}=tan(A)$$
Let's do LHS-RHS to prove it. I will try to make the left side equal the right side.
$$frac{sin(2A)}{1+cos(2A)}$$
Using double angle identites for both sine and cosine:
$$frac{2sin(A)cos(A)}{1+2cos^2(A)-1}$$
How nice. The $1$ and $-1$ in the denominator cancel out.
$$frac{2sin(A)cos(A)}{2cos^2(A)}$$
Cancelling out the $cos(A)$ in the numerator and the denominator yields:
$$frac{2sin(A)}{2cos(A)}$$
We can also cancel out the $2$ in the numerator and the denominator.
$$frac{sin(A)}{cos(A)}$$
$$=tan(A)$$
$$text{LHS=RHS}$$
$$displaystyle boxed{therefore dfrac{sin(2A)}{1+cos(2A)}=tan(A)}$$
$endgroup$
add a comment |
$begingroup$
We need to prove that:
$$frac{sin(2A)}{1+cos(2A)}=tan(A)$$
Let's do LHS-RHS to prove it. I will try to make the left side equal the right side.
$$frac{sin(2A)}{1+cos(2A)}$$
Using double angle identites for both sine and cosine:
$$frac{2sin(A)cos(A)}{1+2cos^2(A)-1}$$
How nice. The $1$ and $-1$ in the denominator cancel out.
$$frac{2sin(A)cos(A)}{2cos^2(A)}$$
Cancelling out the $cos(A)$ in the numerator and the denominator yields:
$$frac{2sin(A)}{2cos(A)}$$
We can also cancel out the $2$ in the numerator and the denominator.
$$frac{sin(A)}{cos(A)}$$
$$=tan(A)$$
$$text{LHS=RHS}$$
$$displaystyle boxed{therefore dfrac{sin(2A)}{1+cos(2A)}=tan(A)}$$
$endgroup$
We need to prove that:
$$frac{sin(2A)}{1+cos(2A)}=tan(A)$$
Let's do LHS-RHS to prove it. I will try to make the left side equal the right side.
$$frac{sin(2A)}{1+cos(2A)}$$
Using double angle identites for both sine and cosine:
$$frac{2sin(A)cos(A)}{1+2cos^2(A)-1}$$
How nice. The $1$ and $-1$ in the denominator cancel out.
$$frac{2sin(A)cos(A)}{2cos^2(A)}$$
Cancelling out the $cos(A)$ in the numerator and the denominator yields:
$$frac{2sin(A)}{2cos(A)}$$
We can also cancel out the $2$ in the numerator and the denominator.
$$frac{sin(A)}{cos(A)}$$
$$=tan(A)$$
$$text{LHS=RHS}$$
$$displaystyle boxed{therefore dfrac{sin(2A)}{1+cos(2A)}=tan(A)}$$
answered Mar 15 '14 at 3:31
TrueDefaultTrueDefault
3,81172950
3,81172950
add a comment |
add a comment |
$begingroup$
First, lets develop a couple of identities.
Given that $sin 2A = 2sin Acos A$, and $cos 2A = cos^2A - sin^2 A$ we have
$$begin{array}{lll}
tan 2A &=& frac{sin 2A}{cos 2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{2tan A}{1-tan^2A}
end{array}$$
Similarly, we have
$$begin{array}{lll}
sec 2A &=& frac{1}{cos 2A}\
&=&frac{1}{cos^2 A-sin^2A}\
&=&frac{1}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{sec^2 A}{1-tan^2A}
end{array}$$
But sometimes it is just as easy to represent these identities as
$$begin{array}{lll}
(1-tan^2 A)sec 2A &=& sec^2 A\
(1-tan^2 A)tan 2A &=& 2tan A
end{array}$$
Applying these identities to the problem at hand we have
$$begin{array}{lll}
frac{sin 2A}{1+cos 2A}&=& frac{sin 2A}{1+cos 2A}cdotfrac{frac{1}{cos 2A}}{frac{1}{cos 2A}}\
&=& frac{tan 2A}{sec 2A +1}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)(sec 2A +1)}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)sec 2A +(1-tan^2 A)}\
&=& frac{2tan A}{sec^2 A +(1-tan^2 A)}\
&=& frac{2tan A}{(tan^2 A+1) +(1-tan^2 A)}\
&=& frac{2tan A}{2}\
&=& tan A\
end{array}$$
discalimer: I like JChau's answer better :)
$endgroup$
add a comment |
$begingroup$
First, lets develop a couple of identities.
Given that $sin 2A = 2sin Acos A$, and $cos 2A = cos^2A - sin^2 A$ we have
$$begin{array}{lll}
tan 2A &=& frac{sin 2A}{cos 2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{2tan A}{1-tan^2A}
end{array}$$
Similarly, we have
$$begin{array}{lll}
sec 2A &=& frac{1}{cos 2A}\
&=&frac{1}{cos^2 A-sin^2A}\
&=&frac{1}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{sec^2 A}{1-tan^2A}
end{array}$$
But sometimes it is just as easy to represent these identities as
$$begin{array}{lll}
(1-tan^2 A)sec 2A &=& sec^2 A\
(1-tan^2 A)tan 2A &=& 2tan A
end{array}$$
Applying these identities to the problem at hand we have
$$begin{array}{lll}
frac{sin 2A}{1+cos 2A}&=& frac{sin 2A}{1+cos 2A}cdotfrac{frac{1}{cos 2A}}{frac{1}{cos 2A}}\
&=& frac{tan 2A}{sec 2A +1}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)(sec 2A +1)}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)sec 2A +(1-tan^2 A)}\
&=& frac{2tan A}{sec^2 A +(1-tan^2 A)}\
&=& frac{2tan A}{(tan^2 A+1) +(1-tan^2 A)}\
&=& frac{2tan A}{2}\
&=& tan A\
end{array}$$
discalimer: I like JChau's answer better :)
$endgroup$
add a comment |
$begingroup$
First, lets develop a couple of identities.
Given that $sin 2A = 2sin Acos A$, and $cos 2A = cos^2A - sin^2 A$ we have
$$begin{array}{lll}
tan 2A &=& frac{sin 2A}{cos 2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{2tan A}{1-tan^2A}
end{array}$$
Similarly, we have
$$begin{array}{lll}
sec 2A &=& frac{1}{cos 2A}\
&=&frac{1}{cos^2 A-sin^2A}\
&=&frac{1}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{sec^2 A}{1-tan^2A}
end{array}$$
But sometimes it is just as easy to represent these identities as
$$begin{array}{lll}
(1-tan^2 A)sec 2A &=& sec^2 A\
(1-tan^2 A)tan 2A &=& 2tan A
end{array}$$
Applying these identities to the problem at hand we have
$$begin{array}{lll}
frac{sin 2A}{1+cos 2A}&=& frac{sin 2A}{1+cos 2A}cdotfrac{frac{1}{cos 2A}}{frac{1}{cos 2A}}\
&=& frac{tan 2A}{sec 2A +1}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)(sec 2A +1)}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)sec 2A +(1-tan^2 A)}\
&=& frac{2tan A}{sec^2 A +(1-tan^2 A)}\
&=& frac{2tan A}{(tan^2 A+1) +(1-tan^2 A)}\
&=& frac{2tan A}{2}\
&=& tan A\
end{array}$$
discalimer: I like JChau's answer better :)
$endgroup$
First, lets develop a couple of identities.
Given that $sin 2A = 2sin Acos A$, and $cos 2A = cos^2A - sin^2 A$ we have
$$begin{array}{lll}
tan 2A &=& frac{sin 2A}{cos 2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}\
&=&frac{2sin Acos A}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{2tan A}{1-tan^2A}
end{array}$$
Similarly, we have
$$begin{array}{lll}
sec 2A &=& frac{1}{cos 2A}\
&=&frac{1}{cos^2 A-sin^2A}\
&=&frac{1}{cos^2 A-sin^2A}cdotfrac{frac{1}{cos^2 A}}{frac{1}{cos^2 A}}\
&=&frac{sec^2 A}{1-tan^2A}
end{array}$$
But sometimes it is just as easy to represent these identities as
$$begin{array}{lll}
(1-tan^2 A)sec 2A &=& sec^2 A\
(1-tan^2 A)tan 2A &=& 2tan A
end{array}$$
Applying these identities to the problem at hand we have
$$begin{array}{lll}
frac{sin 2A}{1+cos 2A}&=& frac{sin 2A}{1+cos 2A}cdotfrac{frac{1}{cos 2A}}{frac{1}{cos 2A}}\
&=& frac{tan 2A}{sec 2A +1}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)(sec 2A +1)}\
&=& frac{(1-tan^2 A)tan 2A}{(1-tan^2 A)sec 2A +(1-tan^2 A)}\
&=& frac{2tan A}{sec^2 A +(1-tan^2 A)}\
&=& frac{2tan A}{(tan^2 A+1) +(1-tan^2 A)}\
&=& frac{2tan A}{2}\
&=& tan A\
end{array}$$
discalimer: I like JChau's answer better :)
answered Jul 27 '14 at 14:27
John JoyJohn Joy
6,31811727
6,31811727
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f120704%2fhow-to-prove-a-trigonometric-identity-tana-frac-sin2a1-cos-2a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Failure to prove is not surprising. It is quite false. For example, take $A=pi/4$ ($45$ degrees).
$endgroup$
– André Nicolas
Mar 15 '12 at 23:48
$begingroup$
I think you want $cos(2A)$ there...
$endgroup$
– David Mitra
Mar 15 '12 at 23:53
$begingroup$
This is not a valid identity: try $A=pi/4$ for example.
$endgroup$
– Shane O Rourke
Mar 15 '12 at 23:54