Given $S_n = 1 + sum_{k=1}^n {1over k!}$ prove that $e-S_n le frac{n+2}{n!(n+1)^2}$












1












$begingroup$



Let $S_n$ be a sequence defined by:
$$
S_n = 1 + sum_{k=1}^n {1over k!}
$$

Prove that:
$$
e - S_n le frac{n+2}{n!(n+1)^2}
$$




This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
$$
L_n = left(1+{1over n}right)^n
$$



Rewrite $L_n$ as follows:
$$
begin{align}
L_n &= left(1+{1over n}right)^n \
&= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
&= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
text{ times}}}{k!n^k}
end{align}
$$



I've then tried to consider the difference between $L_n$ and $S_n$:
$$
L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
= {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
$$



Consider each parentheses. I've tried defining a sequence such that:
$$
forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
$$



This sequence seems to always be less than $0$. So we have that:
$$
forall nin Bbb N :a_n le 0
$$



Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
$$
L_n - S_n = sum_{k=2}^na_n le 0
$$



But at the same time:
$$
frac{n+2}{n!(n+1)^2} ge 0
$$



So by this we have that:
$$
L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
$$



Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.



I've made a Visualization of what is written above, perhaps that would be helpful.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$



    Let $S_n$ be a sequence defined by:
    $$
    S_n = 1 + sum_{k=1}^n {1over k!}
    $$

    Prove that:
    $$
    e - S_n le frac{n+2}{n!(n+1)^2}
    $$




    This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
    $$
    L_n = left(1+{1over n}right)^n
    $$



    Rewrite $L_n$ as follows:
    $$
    begin{align}
    L_n &= left(1+{1over n}right)^n \
    &= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
    &= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
    text{ times}}}{k!n^k}
    end{align}
    $$



    I've then tried to consider the difference between $L_n$ and $S_n$:
    $$
    L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
    = {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
    $$



    Consider each parentheses. I've tried defining a sequence such that:
    $$
    forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
    $$



    This sequence seems to always be less than $0$. So we have that:
    $$
    forall nin Bbb N :a_n le 0
    $$



    Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
    $$
    L_n - S_n = sum_{k=2}^na_n le 0
    $$



    But at the same time:
    $$
    frac{n+2}{n!(n+1)^2} ge 0
    $$



    So by this we have that:
    $$
    L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
    $$



    Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.



    I've made a Visualization of what is written above, perhaps that would be helpful.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$



      Let $S_n$ be a sequence defined by:
      $$
      S_n = 1 + sum_{k=1}^n {1over k!}
      $$

      Prove that:
      $$
      e - S_n le frac{n+2}{n!(n+1)^2}
      $$




      This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
      $$
      L_n = left(1+{1over n}right)^n
      $$



      Rewrite $L_n$ as follows:
      $$
      begin{align}
      L_n &= left(1+{1over n}right)^n \
      &= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
      &= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
      text{ times}}}{k!n^k}
      end{align}
      $$



      I've then tried to consider the difference between $L_n$ and $S_n$:
      $$
      L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
      = {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
      $$



      Consider each parentheses. I've tried defining a sequence such that:
      $$
      forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
      $$



      This sequence seems to always be less than $0$. So we have that:
      $$
      forall nin Bbb N :a_n le 0
      $$



      Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
      $$
      L_n - S_n = sum_{k=2}^na_n le 0
      $$



      But at the same time:
      $$
      frac{n+2}{n!(n+1)^2} ge 0
      $$



      So by this we have that:
      $$
      L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
      $$



      Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.



      I've made a Visualization of what is written above, perhaps that would be helpful.










      share|cite|improve this question









      $endgroup$





      Let $S_n$ be a sequence defined by:
      $$
      S_n = 1 + sum_{k=1}^n {1over k!}
      $$

      Prove that:
      $$
      e - S_n le frac{n+2}{n!(n+1)^2}
      $$




      This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
      $$
      L_n = left(1+{1over n}right)^n
      $$



      Rewrite $L_n$ as follows:
      $$
      begin{align}
      L_n &= left(1+{1over n}right)^n \
      &= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
      &= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
      text{ times}}}{k!n^k}
      end{align}
      $$



      I've then tried to consider the difference between $L_n$ and $S_n$:
      $$
      L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
      = {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
      $$



      Consider each parentheses. I've tried defining a sequence such that:
      $$
      forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
      $$



      This sequence seems to always be less than $0$. So we have that:
      $$
      forall nin Bbb N :a_n le 0
      $$



      Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
      $$
      L_n - S_n = sum_{k=2}^na_n le 0
      $$



      But at the same time:
      $$
      frac{n+2}{n!(n+1)^2} ge 0
      $$



      So by this we have that:
      $$
      L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
      $$



      Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.



      I've made a Visualization of what is written above, perhaps that would be helpful.







      calculus sequences-and-series limits proof-verification






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 21 at 17:48









      romanroman

      2,28421224




      2,28421224






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
          $$
          limlimits_{nrightarrowinfty} S_n = e.
          $$

          This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.



          Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
          $$
          S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
          $$



          From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
            $endgroup$
            – roman
            Jan 22 at 14:08






          • 1




            $begingroup$
            Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
            $endgroup$
            – richrow
            Jan 23 at 18:29



















          2












          $begingroup$

          $begin{array}\
          e-S_n
          &= sum_{k=n+1}^{infty} {1over k!}\
          &= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
          &= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
          &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
          &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
          &< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
          &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
          &= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
          &= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
          &= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
          &= frac{n+2}{(n+1)(n+1)!}\
          &= frac{n+2}{(n+1)^2n!}\
          end{array}
          $






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082168%2fgiven-s-n-1-sum-k-1n-1-over-k-prove-that-e-s-n-le-fracn2nn%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
            $$
            limlimits_{nrightarrowinfty} S_n = e.
            $$

            This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.



            Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
            $$
            S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
            $$



            From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
              $endgroup$
              – roman
              Jan 22 at 14:08






            • 1




              $begingroup$
              Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
              $endgroup$
              – richrow
              Jan 23 at 18:29
















            2












            $begingroup$

            We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
            $$
            limlimits_{nrightarrowinfty} S_n = e.
            $$

            This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.



            Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
            $$
            S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
            $$



            From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
              $endgroup$
              – roman
              Jan 22 at 14:08






            • 1




              $begingroup$
              Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
              $endgroup$
              – richrow
              Jan 23 at 18:29














            2












            2








            2





            $begingroup$

            We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
            $$
            limlimits_{nrightarrowinfty} S_n = e.
            $$

            This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.



            Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
            $$
            S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
            $$



            From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.






            share|cite|improve this answer









            $endgroup$



            We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
            $$
            limlimits_{nrightarrowinfty} S_n = e.
            $$

            This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.



            Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
            $$
            S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
            $$



            From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 21 at 20:10









            richrowrichrow

            17316




            17316












            • $begingroup$
              Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
              $endgroup$
              – roman
              Jan 22 at 14:08






            • 1




              $begingroup$
              Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
              $endgroup$
              – richrow
              Jan 23 at 18:29


















            • $begingroup$
              Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
              $endgroup$
              – roman
              Jan 22 at 14:08






            • 1




              $begingroup$
              Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
              $endgroup$
              – richrow
              Jan 23 at 18:29
















            $begingroup$
            Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
            $endgroup$
            – roman
            Jan 22 at 14:08




            $begingroup$
            Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
            $endgroup$
            – roman
            Jan 22 at 14:08




            1




            1




            $begingroup$
            Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
            $endgroup$
            – richrow
            Jan 23 at 18:29




            $begingroup$
            Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
            $endgroup$
            – richrow
            Jan 23 at 18:29











            2












            $begingroup$

            $begin{array}\
            e-S_n
            &= sum_{k=n+1}^{infty} {1over k!}\
            &= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
            &= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
            &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
            &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
            &< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
            &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
            &= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
            &= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
            &= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
            &= frac{n+2}{(n+1)(n+1)!}\
            &= frac{n+2}{(n+1)^2n!}\
            end{array}
            $






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              $begin{array}\
              e-S_n
              &= sum_{k=n+1}^{infty} {1over k!}\
              &= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
              &= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
              &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
              &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
              &< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
              &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
              &= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
              &= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
              &= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
              &= frac{n+2}{(n+1)(n+1)!}\
              &= frac{n+2}{(n+1)^2n!}\
              end{array}
              $






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                $begin{array}\
                e-S_n
                &= sum_{k=n+1}^{infty} {1over k!}\
                &= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
                &= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
                &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
                &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
                &< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
                &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
                &= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
                &= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
                &= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
                &= frac{n+2}{(n+1)(n+1)!}\
                &= frac{n+2}{(n+1)^2n!}\
                end{array}
                $






                share|cite|improve this answer









                $endgroup$



                $begin{array}\
                e-S_n
                &= sum_{k=n+1}^{infty} {1over k!}\
                &= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
                &= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
                &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
                &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
                &< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
                &= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
                &= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
                &= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
                &= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
                &= frac{n+2}{(n+1)(n+1)!}\
                &= frac{n+2}{(n+1)^2n!}\
                end{array}
                $







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 21 at 23:37









                marty cohenmarty cohen

                73.9k549128




                73.9k549128






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082168%2fgiven-s-n-1-sum-k-1n-1-over-k-prove-that-e-s-n-le-fracn2nn%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?