Given $S_n = 1 + sum_{k=1}^n {1over k!}$ prove that $e-S_n le frac{n+2}{n!(n+1)^2}$
$begingroup$
Let $S_n$ be a sequence defined by:
$$
S_n = 1 + sum_{k=1}^n {1over k!}
$$
Prove that:
$$
e - S_n le frac{n+2}{n!(n+1)^2}
$$
This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
$$
L_n = left(1+{1over n}right)^n
$$
Rewrite $L_n$ as follows:
$$
begin{align}
L_n &= left(1+{1over n}right)^n \
&= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
&= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
text{ times}}}{k!n^k}
end{align}
$$
I've then tried to consider the difference between $L_n$ and $S_n$:
$$
L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
= {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
$$
Consider each parentheses. I've tried defining a sequence such that:
$$
forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
$$
This sequence seems to always be less than $0$. So we have that:
$$
forall nin Bbb N :a_n le 0
$$
Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
$$
L_n - S_n = sum_{k=2}^na_n le 0
$$
But at the same time:
$$
frac{n+2}{n!(n+1)^2} ge 0
$$
So by this we have that:
$$
L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
$$
Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.
I've made a Visualization of what is written above, perhaps that would be helpful.
calculus sequences-and-series limits proof-verification
$endgroup$
add a comment |
$begingroup$
Let $S_n$ be a sequence defined by:
$$
S_n = 1 + sum_{k=1}^n {1over k!}
$$
Prove that:
$$
e - S_n le frac{n+2}{n!(n+1)^2}
$$
This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
$$
L_n = left(1+{1over n}right)^n
$$
Rewrite $L_n$ as follows:
$$
begin{align}
L_n &= left(1+{1over n}right)^n \
&= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
&= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
text{ times}}}{k!n^k}
end{align}
$$
I've then tried to consider the difference between $L_n$ and $S_n$:
$$
L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
= {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
$$
Consider each parentheses. I've tried defining a sequence such that:
$$
forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
$$
This sequence seems to always be less than $0$. So we have that:
$$
forall nin Bbb N :a_n le 0
$$
Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
$$
L_n - S_n = sum_{k=2}^na_n le 0
$$
But at the same time:
$$
frac{n+2}{n!(n+1)^2} ge 0
$$
So by this we have that:
$$
L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
$$
Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.
I've made a Visualization of what is written above, perhaps that would be helpful.
calculus sequences-and-series limits proof-verification
$endgroup$
add a comment |
$begingroup$
Let $S_n$ be a sequence defined by:
$$
S_n = 1 + sum_{k=1}^n {1over k!}
$$
Prove that:
$$
e - S_n le frac{n+2}{n!(n+1)^2}
$$
This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
$$
L_n = left(1+{1over n}right)^n
$$
Rewrite $L_n$ as follows:
$$
begin{align}
L_n &= left(1+{1over n}right)^n \
&= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
&= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
text{ times}}}{k!n^k}
end{align}
$$
I've then tried to consider the difference between $L_n$ and $S_n$:
$$
L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
= {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
$$
Consider each parentheses. I've tried defining a sequence such that:
$$
forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
$$
This sequence seems to always be less than $0$. So we have that:
$$
forall nin Bbb N :a_n le 0
$$
Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
$$
L_n - S_n = sum_{k=2}^na_n le 0
$$
But at the same time:
$$
frac{n+2}{n!(n+1)^2} ge 0
$$
So by this we have that:
$$
L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
$$
Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.
I've made a Visualization of what is written above, perhaps that would be helpful.
calculus sequences-and-series limits proof-verification
$endgroup$
Let $S_n$ be a sequence defined by:
$$
S_n = 1 + sum_{k=1}^n {1over k!}
$$
Prove that:
$$
e - S_n le frac{n+2}{n!(n+1)^2}
$$
This problem comes in the limits section so i may use anything before the definition of a derivative. I've started with the following. Define:
$$
L_n = left(1+{1over n}right)^n
$$
Rewrite $L_n$ as follows:
$$
begin{align}
L_n &= left(1+{1over n}right)^n \
&= 1+ sum_{k=1}^n {nchoose k}{1over n^k} \
&= 1 + sum_{k=1}^nfrac{overbrace{ncdot(n-1)cdot(n-2)cdots(n-(k-1))}^{n - k + 1
text{ times}}}{k!n^k}
end{align}
$$
I've then tried to consider the difference between $L_n$ and $S_n$:
$$
L_n - S_n = {1over 2!}left(1-{1over n}right) - {1over 2!} + {1over 3!}left(1-{1over n}right)left(1-{2over n}right) - {1over 3!} + cdots \
= {1over 2!}left(1-{1over n} - 1right) + {1over 3!}left(left(1-{1over n}right)left(1-{2over n}right) - 1right) + cdots
$$
Consider each parentheses. I've tried defining a sequence such that:
$$
forall n ge 2:a_n = {1over n!}left(prod_{k=1}^{n-1}left(1-{kover n}right) - 1right)
$$
This sequence seems to always be less than $0$. So we have that:
$$
forall nin Bbb N :a_n le 0
$$
Since $a_n$ is involved in $L_n - S_n$ we may also conclude that it is also less than $0$, namely:
$$
L_n - S_n = sum_{k=2}^na_n le 0
$$
But at the same time:
$$
frac{n+2}{n!(n+1)^2} ge 0
$$
So by this we have that:
$$
L_n - S_n le e - S_n le 0 le frac{n+2}{n!(n+1)^2}
$$
Now I don't see how to proceed. Should I bound the difference from another side? It feels like all i've done so far (above) is not even a usable argument for this problem, so could you please help me prove what's in the problem statement or point to the right direction.
I've made a Visualization of what is written above, perhaps that would be helpful.
calculus sequences-and-series limits proof-verification
calculus sequences-and-series limits proof-verification
asked Jan 21 at 17:48
romanroman
2,28421224
2,28421224
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
$$
limlimits_{nrightarrowinfty} S_n = e.
$$
This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.
Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
$$
S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
$$
From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.
$endgroup$
$begingroup$
Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
$endgroup$
– roman
Jan 22 at 14:08
1
$begingroup$
Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
$endgroup$
– richrow
Jan 23 at 18:29
add a comment |
$begingroup$
$begin{array}\
e-S_n
&= sum_{k=n+1}^{infty} {1over k!}\
&= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
&= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
&< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
&= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
&= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
&= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
&= frac{n+2}{(n+1)(n+1)!}\
&= frac{n+2}{(n+1)^2n!}\
end{array}
$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082168%2fgiven-s-n-1-sum-k-1n-1-over-k-prove-that-e-s-n-le-fracn2nn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
$$
limlimits_{nrightarrowinfty} S_n = e.
$$
This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.
Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
$$
S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
$$
From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.
$endgroup$
$begingroup$
Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
$endgroup$
– roman
Jan 22 at 14:08
1
$begingroup$
Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
$endgroup$
– richrow
Jan 23 at 18:29
add a comment |
$begingroup$
We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
$$
limlimits_{nrightarrowinfty} S_n = e.
$$
This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.
Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
$$
S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
$$
From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.
$endgroup$
$begingroup$
Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
$endgroup$
– roman
Jan 22 at 14:08
1
$begingroup$
Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
$endgroup$
– richrow
Jan 23 at 18:29
add a comment |
$begingroup$
We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
$$
limlimits_{nrightarrowinfty} S_n = e.
$$
This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.
Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
$$
S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
$$
From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.
$endgroup$
We will use the following limit. If $S_n=sumlimits_{k=0}^{n}frac{1}{k!}$ then
$$
limlimits_{nrightarrowinfty} S_n = e.
$$
This limit can be derived from $limlimits_{nrightarrowinfty} left(1+frac{1}{n}right)^n = e$.
Now we will prove that for any $mgeq 1$ inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ holds. Indeed,
$$
S_{n+m}-S_n=frac{1}{(n+1)!}+frac{1}{(n+2)!}+ldots+frac{1}{(n+m)!}leq frac{1}{(n+1)!}left(1+frac{1}{n+2}+ldots+frac{1}{(n+2)^{m-1}}right)=frac{1}{(n+1)!}cdot frac{1-frac{1}{(n+2)^m}}{1-frac{1}{n+2}}<frac{n+2}{(n+1)(n+1)!}.
$$
From inequality $S_{n+m}leq S_n+frac{n+2}{(n+1)(n+1)!}$ when $m$ tend to infinity we get $eleq S_n+frac{n+2}{(n+1)(n+1)!}$ as desired.
answered Jan 21 at 20:10
richrowrichrow
17316
17316
$begingroup$
Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
$endgroup$
– roman
Jan 22 at 14:08
1
$begingroup$
Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
$endgroup$
– richrow
Jan 23 at 18:29
add a comment |
$begingroup$
Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
$endgroup$
– roman
Jan 22 at 14:08
1
$begingroup$
Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
$endgroup$
– richrow
Jan 23 at 18:29
$begingroup$
Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
$endgroup$
– roman
Jan 22 at 14:08
$begingroup$
Thank you for the answer. Could you please justify the last step, it's not very obvious for me? namely $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} < frac{n+2}{(n+1)(n+1)!}$.
$endgroup$
– roman
Jan 22 at 14:08
1
1
$begingroup$
Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
$endgroup$
– richrow
Jan 23 at 18:29
$begingroup$
Just note that $frac{1}{(n+1)!} cdot frac{1- (n+2)^{-m}}{1-(n+2)^{-1}} <frac{1}{(n+1)!} cdot frac{1}{1-(n+2)^{-1}}=frac{n+2}{(n+1)(n+1)!}$
$endgroup$
– richrow
Jan 23 at 18:29
add a comment |
$begingroup$
$begin{array}\
e-S_n
&= sum_{k=n+1}^{infty} {1over k!}\
&= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
&= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
&< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
&= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
&= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
&= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
&= frac{n+2}{(n+1)(n+1)!}\
&= frac{n+2}{(n+1)^2n!}\
end{array}
$
$endgroup$
add a comment |
$begingroup$
$begin{array}\
e-S_n
&= sum_{k=n+1}^{infty} {1over k!}\
&= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
&= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
&< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
&= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
&= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
&= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
&= frac{n+2}{(n+1)(n+1)!}\
&= frac{n+2}{(n+1)^2n!}\
end{array}
$
$endgroup$
add a comment |
$begingroup$
$begin{array}\
e-S_n
&= sum_{k=n+1}^{infty} {1over k!}\
&= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
&= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
&< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
&= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
&= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
&= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
&= frac{n+2}{(n+1)(n+1)!}\
&= frac{n+2}{(n+1)^2n!}\
end{array}
$
$endgroup$
$begin{array}\
e-S_n
&= sum_{k=n+1}^{infty} {1over k!}\
&= frac1{(n+1)!}sum_{k=n+1}^{infty} {(n+1)!over k!}\
&= frac1{(n+1)!}sum_{k=0}^{infty} {(n+1)!over (n+1+k)!}\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {(n+1)!over (n+1+k)!}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+1+j)}right)\
&< frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over prod_{j=1}^{k}(n+2)}right)\
&= frac1{(n+1)!}left(1+sum_{k=1}^{infty} {1over (n+2)^k}right)\
&= frac1{(n+1)!}left(1+frac{1/(n+2)}{1-1/(n+2)}right)\
&= frac1{(n+1)!}left(1+frac{1}{n+1}right)\
&= frac1{(n+1)!}left(frac{n+2}{n+1}right)\
&= frac{n+2}{(n+1)(n+1)!}\
&= frac{n+2}{(n+1)^2n!}\
end{array}
$
answered Jan 21 at 23:37
marty cohenmarty cohen
73.9k549128
73.9k549128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082168%2fgiven-s-n-1-sum-k-1n-1-over-k-prove-that-e-s-n-le-fracn2nn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown