Is this inequality true? $u^2+v^2+s^2+t^2geq (u+v)(s+t)$
$begingroup$
Is this inequality true in $mathbb{R}$? $$u^2+v^2+s^2+t^2geq (u+v)(s+t)$$
I don't know if this is a well-known result. If you have a counterexample or a relevant reference I would appreciate it.
inequality reference-request a.m.-g.m.-inequality cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
Is this inequality true in $mathbb{R}$? $$u^2+v^2+s^2+t^2geq (u+v)(s+t)$$
I don't know if this is a well-known result. If you have a counterexample or a relevant reference I would appreciate it.
inequality reference-request a.m.-g.m.-inequality cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
Is this inequality true in $mathbb{R}$? $$u^2+v^2+s^2+t^2geq (u+v)(s+t)$$
I don't know if this is a well-known result. If you have a counterexample or a relevant reference I would appreciate it.
inequality reference-request a.m.-g.m.-inequality cauchy-schwarz-inequality
$endgroup$
Is this inequality true in $mathbb{R}$? $$u^2+v^2+s^2+t^2geq (u+v)(s+t)$$
I don't know if this is a well-known result. If you have a counterexample or a relevant reference I would appreciate it.
inequality reference-request a.m.-g.m.-inequality cauchy-schwarz-inequality
inequality reference-request a.m.-g.m.-inequality cauchy-schwarz-inequality
edited Jan 21 at 12:52
Michael Rozenberg
104k1892197
104k1892197
asked Jan 20 at 18:59
ChiloteChilote
1,98811035
1,98811035
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
begin{eqnarray*}
(u-s)^2+ (u-t)^2+(v-s)^2+(v-t)^2geq 0.
end{eqnarray*}
Now divide by $2$ and rearrange.
$endgroup$
add a comment |
$begingroup$
Yes, it's true.
By C-S and AM-GM we obtain:
$$u^2+v^2+s^2+t^2=frac{1}{2}left((1^2+1^2)(u^2+v^2)+(1^2+1^2)(s^2+t^2)right)geq$$
$$geqfrac{1}{2}left((u+v)^2+(s+t)^2right)geqsqrt{(u+v)^2(s+t)^2}=|(u+v)(s+t)|geq(u+v)(s+t).$$
$endgroup$
add a comment |
$begingroup$
It is $$(u-v)^2+(v-s)^2+(u-t)^2+(v-t)^2geq 0$$
$endgroup$
2
$begingroup$
Are you sure, Sonnhard?
$endgroup$
– Michael Rozenberg
Jan 20 at 21:57
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080992%2fis-this-inequality-true-u2v2s2t2-geq-uvst%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{eqnarray*}
(u-s)^2+ (u-t)^2+(v-s)^2+(v-t)^2geq 0.
end{eqnarray*}
Now divide by $2$ and rearrange.
$endgroup$
add a comment |
$begingroup$
begin{eqnarray*}
(u-s)^2+ (u-t)^2+(v-s)^2+(v-t)^2geq 0.
end{eqnarray*}
Now divide by $2$ and rearrange.
$endgroup$
add a comment |
$begingroup$
begin{eqnarray*}
(u-s)^2+ (u-t)^2+(v-s)^2+(v-t)^2geq 0.
end{eqnarray*}
Now divide by $2$ and rearrange.
$endgroup$
begin{eqnarray*}
(u-s)^2+ (u-t)^2+(v-s)^2+(v-t)^2geq 0.
end{eqnarray*}
Now divide by $2$ and rearrange.
answered Jan 20 at 19:03
Donald SplutterwitDonald Splutterwit
22.8k21445
22.8k21445
add a comment |
add a comment |
$begingroup$
Yes, it's true.
By C-S and AM-GM we obtain:
$$u^2+v^2+s^2+t^2=frac{1}{2}left((1^2+1^2)(u^2+v^2)+(1^2+1^2)(s^2+t^2)right)geq$$
$$geqfrac{1}{2}left((u+v)^2+(s+t)^2right)geqsqrt{(u+v)^2(s+t)^2}=|(u+v)(s+t)|geq(u+v)(s+t).$$
$endgroup$
add a comment |
$begingroup$
Yes, it's true.
By C-S and AM-GM we obtain:
$$u^2+v^2+s^2+t^2=frac{1}{2}left((1^2+1^2)(u^2+v^2)+(1^2+1^2)(s^2+t^2)right)geq$$
$$geqfrac{1}{2}left((u+v)^2+(s+t)^2right)geqsqrt{(u+v)^2(s+t)^2}=|(u+v)(s+t)|geq(u+v)(s+t).$$
$endgroup$
add a comment |
$begingroup$
Yes, it's true.
By C-S and AM-GM we obtain:
$$u^2+v^2+s^2+t^2=frac{1}{2}left((1^2+1^2)(u^2+v^2)+(1^2+1^2)(s^2+t^2)right)geq$$
$$geqfrac{1}{2}left((u+v)^2+(s+t)^2right)geqsqrt{(u+v)^2(s+t)^2}=|(u+v)(s+t)|geq(u+v)(s+t).$$
$endgroup$
Yes, it's true.
By C-S and AM-GM we obtain:
$$u^2+v^2+s^2+t^2=frac{1}{2}left((1^2+1^2)(u^2+v^2)+(1^2+1^2)(s^2+t^2)right)geq$$
$$geqfrac{1}{2}left((u+v)^2+(s+t)^2right)geqsqrt{(u+v)^2(s+t)^2}=|(u+v)(s+t)|geq(u+v)(s+t).$$
answered Jan 20 at 19:03
Michael RozenbergMichael Rozenberg
104k1892197
104k1892197
add a comment |
add a comment |
$begingroup$
It is $$(u-v)^2+(v-s)^2+(u-t)^2+(v-t)^2geq 0$$
$endgroup$
2
$begingroup$
Are you sure, Sonnhard?
$endgroup$
– Michael Rozenberg
Jan 20 at 21:57
add a comment |
$begingroup$
It is $$(u-v)^2+(v-s)^2+(u-t)^2+(v-t)^2geq 0$$
$endgroup$
2
$begingroup$
Are you sure, Sonnhard?
$endgroup$
– Michael Rozenberg
Jan 20 at 21:57
add a comment |
$begingroup$
It is $$(u-v)^2+(v-s)^2+(u-t)^2+(v-t)^2geq 0$$
$endgroup$
It is $$(u-v)^2+(v-s)^2+(u-t)^2+(v-t)^2geq 0$$
answered Jan 20 at 19:02
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
75.9k42866
75.9k42866
2
$begingroup$
Are you sure, Sonnhard?
$endgroup$
– Michael Rozenberg
Jan 20 at 21:57
add a comment |
2
$begingroup$
Are you sure, Sonnhard?
$endgroup$
– Michael Rozenberg
Jan 20 at 21:57
2
2
$begingroup$
Are you sure, Sonnhard?
$endgroup$
– Michael Rozenberg
Jan 20 at 21:57
$begingroup$
Are you sure, Sonnhard?
$endgroup$
– Michael Rozenberg
Jan 20 at 21:57
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080992%2fis-this-inequality-true-u2v2s2t2-geq-uvst%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown