Is Sum of Principal Minors Equals to Pseudo Determinant?
$begingroup$
I'd like to prove following statement and check whether it's true or not.
Let $M$ be a diagonalizable $n × n$ matrix. If the rank of $M$ equals $r (> 0)$, then the pseudo determinant pdet$M$ equals the sum of all principal minors of order $r$.
Pseudo determinant refers to the product of all non-zero eigenvalues of a square matrix. Eigenvalues are scaling factors as far as I know. And principal minors of order r, is also small-sized scaling factors(determinant) of given $M$.
But does pseudo determinant equal to sum of all principal minor? It looks to me multiplication of those equals to pseudo determinant.
Which one is correct?
determinant
$endgroup$
|
show 5 more comments
$begingroup$
I'd like to prove following statement and check whether it's true or not.
Let $M$ be a diagonalizable $n × n$ matrix. If the rank of $M$ equals $r (> 0)$, then the pseudo determinant pdet$M$ equals the sum of all principal minors of order $r$.
Pseudo determinant refers to the product of all non-zero eigenvalues of a square matrix. Eigenvalues are scaling factors as far as I know. And principal minors of order r, is also small-sized scaling factors(determinant) of given $M$.
But does pseudo determinant equal to sum of all principal minor? It looks to me multiplication of those equals to pseudo determinant.
Which one is correct?
determinant
$endgroup$
$begingroup$
This is true. The sum of all principal minors of order $r$ is the sum of all $r$-wise products of the eigenvalues. Now, if only $r$ of the eigenvalues are nonzero, then the latter sum will be the product of these $r$ nonzero eigenvalues. Hence, so is the former sum.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:25
$begingroup$
@darijgrinberg what do you mean by sum of all r-wise products of the eigenvalues? The OP says just pseudo determinant equals the sum of all principal minors, and the definition of pseudo determinant is products of all eigenvalues
$endgroup$
– delinco
Apr 2 '18 at 3:55
$begingroup$
If $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$, then the sum of all principal minors of order $r$ of $A$ is $sumlimits_{1 leq i_1 < i_2 < cdots < i_r leq n} lambda_{i_1} lambda_{i_2} cdots lambda_{i_r}$. This is the well-known fact that I'm referring to. Of course, if $A$ has only $r$ nonzero eigenvalues, then this sum will have only one nonzero addend.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:56
$begingroup$
@darijgrinberg could you give me reference that I can follow the proof?
$endgroup$
– delinco
Apr 2 '18 at 3:57
1
$begingroup$
Exterior powers. For a really elementary self-contained proof, see Corollary 5.163 in my Notes on the combinatorial fundamentals of algebra, version of 21 March 2018 (for the solution, see Exercise 5.48). But the gist of the argument is explained well in math.stackexchange.com/questions/336048/coefficient-of-detxia/… .
$endgroup$
– darij grinberg
Apr 2 '18 at 4:42
|
show 5 more comments
$begingroup$
I'd like to prove following statement and check whether it's true or not.
Let $M$ be a diagonalizable $n × n$ matrix. If the rank of $M$ equals $r (> 0)$, then the pseudo determinant pdet$M$ equals the sum of all principal minors of order $r$.
Pseudo determinant refers to the product of all non-zero eigenvalues of a square matrix. Eigenvalues are scaling factors as far as I know. And principal minors of order r, is also small-sized scaling factors(determinant) of given $M$.
But does pseudo determinant equal to sum of all principal minor? It looks to me multiplication of those equals to pseudo determinant.
Which one is correct?
determinant
$endgroup$
I'd like to prove following statement and check whether it's true or not.
Let $M$ be a diagonalizable $n × n$ matrix. If the rank of $M$ equals $r (> 0)$, then the pseudo determinant pdet$M$ equals the sum of all principal minors of order $r$.
Pseudo determinant refers to the product of all non-zero eigenvalues of a square matrix. Eigenvalues are scaling factors as far as I know. And principal minors of order r, is also small-sized scaling factors(determinant) of given $M$.
But does pseudo determinant equal to sum of all principal minor? It looks to me multiplication of those equals to pseudo determinant.
Which one is correct?
determinant
determinant
asked Apr 2 '18 at 3:23
delincodelinco
1289
1289
$begingroup$
This is true. The sum of all principal minors of order $r$ is the sum of all $r$-wise products of the eigenvalues. Now, if only $r$ of the eigenvalues are nonzero, then the latter sum will be the product of these $r$ nonzero eigenvalues. Hence, so is the former sum.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:25
$begingroup$
@darijgrinberg what do you mean by sum of all r-wise products of the eigenvalues? The OP says just pseudo determinant equals the sum of all principal minors, and the definition of pseudo determinant is products of all eigenvalues
$endgroup$
– delinco
Apr 2 '18 at 3:55
$begingroup$
If $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$, then the sum of all principal minors of order $r$ of $A$ is $sumlimits_{1 leq i_1 < i_2 < cdots < i_r leq n} lambda_{i_1} lambda_{i_2} cdots lambda_{i_r}$. This is the well-known fact that I'm referring to. Of course, if $A$ has only $r$ nonzero eigenvalues, then this sum will have only one nonzero addend.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:56
$begingroup$
@darijgrinberg could you give me reference that I can follow the proof?
$endgroup$
– delinco
Apr 2 '18 at 3:57
1
$begingroup$
Exterior powers. For a really elementary self-contained proof, see Corollary 5.163 in my Notes on the combinatorial fundamentals of algebra, version of 21 March 2018 (for the solution, see Exercise 5.48). But the gist of the argument is explained well in math.stackexchange.com/questions/336048/coefficient-of-detxia/… .
$endgroup$
– darij grinberg
Apr 2 '18 at 4:42
|
show 5 more comments
$begingroup$
This is true. The sum of all principal minors of order $r$ is the sum of all $r$-wise products of the eigenvalues. Now, if only $r$ of the eigenvalues are nonzero, then the latter sum will be the product of these $r$ nonzero eigenvalues. Hence, so is the former sum.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:25
$begingroup$
@darijgrinberg what do you mean by sum of all r-wise products of the eigenvalues? The OP says just pseudo determinant equals the sum of all principal minors, and the definition of pseudo determinant is products of all eigenvalues
$endgroup$
– delinco
Apr 2 '18 at 3:55
$begingroup$
If $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$, then the sum of all principal minors of order $r$ of $A$ is $sumlimits_{1 leq i_1 < i_2 < cdots < i_r leq n} lambda_{i_1} lambda_{i_2} cdots lambda_{i_r}$. This is the well-known fact that I'm referring to. Of course, if $A$ has only $r$ nonzero eigenvalues, then this sum will have only one nonzero addend.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:56
$begingroup$
@darijgrinberg could you give me reference that I can follow the proof?
$endgroup$
– delinco
Apr 2 '18 at 3:57
1
$begingroup$
Exterior powers. For a really elementary self-contained proof, see Corollary 5.163 in my Notes on the combinatorial fundamentals of algebra, version of 21 March 2018 (for the solution, see Exercise 5.48). But the gist of the argument is explained well in math.stackexchange.com/questions/336048/coefficient-of-detxia/… .
$endgroup$
– darij grinberg
Apr 2 '18 at 4:42
$begingroup$
This is true. The sum of all principal minors of order $r$ is the sum of all $r$-wise products of the eigenvalues. Now, if only $r$ of the eigenvalues are nonzero, then the latter sum will be the product of these $r$ nonzero eigenvalues. Hence, so is the former sum.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:25
$begingroup$
This is true. The sum of all principal minors of order $r$ is the sum of all $r$-wise products of the eigenvalues. Now, if only $r$ of the eigenvalues are nonzero, then the latter sum will be the product of these $r$ nonzero eigenvalues. Hence, so is the former sum.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:25
$begingroup$
@darijgrinberg what do you mean by sum of all r-wise products of the eigenvalues? The OP says just pseudo determinant equals the sum of all principal minors, and the definition of pseudo determinant is products of all eigenvalues
$endgroup$
– delinco
Apr 2 '18 at 3:55
$begingroup$
@darijgrinberg what do you mean by sum of all r-wise products of the eigenvalues? The OP says just pseudo determinant equals the sum of all principal minors, and the definition of pseudo determinant is products of all eigenvalues
$endgroup$
– delinco
Apr 2 '18 at 3:55
$begingroup$
If $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$, then the sum of all principal minors of order $r$ of $A$ is $sumlimits_{1 leq i_1 < i_2 < cdots < i_r leq n} lambda_{i_1} lambda_{i_2} cdots lambda_{i_r}$. This is the well-known fact that I'm referring to. Of course, if $A$ has only $r$ nonzero eigenvalues, then this sum will have only one nonzero addend.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:56
$begingroup$
If $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$, then the sum of all principal minors of order $r$ of $A$ is $sumlimits_{1 leq i_1 < i_2 < cdots < i_r leq n} lambda_{i_1} lambda_{i_2} cdots lambda_{i_r}$. This is the well-known fact that I'm referring to. Of course, if $A$ has only $r$ nonzero eigenvalues, then this sum will have only one nonzero addend.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:56
$begingroup$
@darijgrinberg could you give me reference that I can follow the proof?
$endgroup$
– delinco
Apr 2 '18 at 3:57
$begingroup$
@darijgrinberg could you give me reference that I can follow the proof?
$endgroup$
– delinco
Apr 2 '18 at 3:57
1
1
$begingroup$
Exterior powers. For a really elementary self-contained proof, see Corollary 5.163 in my Notes on the combinatorial fundamentals of algebra, version of 21 March 2018 (for the solution, see Exercise 5.48). But the gist of the argument is explained well in math.stackexchange.com/questions/336048/coefficient-of-detxia/… .
$endgroup$
– darij grinberg
Apr 2 '18 at 4:42
$begingroup$
Exterior powers. For a really elementary self-contained proof, see Corollary 5.163 in my Notes on the combinatorial fundamentals of algebra, version of 21 March 2018 (for the solution, see Exercise 5.48). But the gist of the argument is explained well in math.stackexchange.com/questions/336048/coefficient-of-detxia/… .
$endgroup$
– darij grinberg
Apr 2 '18 at 4:42
|
show 5 more comments
1 Answer
1
active
oldest
votes
$begingroup$
In order not to leave this question unanswered, let me prove the claim along
the lines I've suggested in the comments.
Let us agree on a few notations:
Let $n$ and $m$ be two nonnegative integers. Let $A=left( a_{i,j}right)
_{1leq ileq n, 1leq jleq m}$ be an $ntimes m$-matrix (over some ring).
Let $U=left{ u_{1}<u_{2}<cdots<u_{p}right} $ be a subset of $left{
1,2,ldots,nright} $, and let $V=left{ v_{1}<v_{2}<cdots<v_{q}right}
$ be a subset of $left{ 1,2,ldots,mright} $. Then, $A_{U,V}$ shall
denote the submatrix $left( a_{u_{i},v_{j}}right) _{1leq ileq p, 1leq
jleq q}$ of $A$. (This is the matrix obtained from $A$ by crossing out all
rows except for the rows numbered $u_{1},u_{2},ldots,u_{p}$ and crossing out
all columns except for the columns numbered $v_{1},v_{2},ldots,v_{q}$.) For
example,
begin{equation}
begin{pmatrix}
a_{1} & a_{2} & a_{3} & a_{4}\
b_{1} & b_{2} & b_{3} & b_{4}\
c_{1} & c_{2} & c_{3} & c_{4}\
d_{1} & d_{2} & d_{3} & d_{4}
end{pmatrix}
_{left{ 1,3,4right} ,left{ 2,4right} }
=
begin{pmatrix}
a_{2} & a_{4}\
c_{2} & c_{4}\
d_{2} & d_{4}
end{pmatrix} .
end{equation}If $n$ is a nonnegative integer, then $I_n$ will denote the $ntimes n$
identity matrix (over whatever ring we are working in).
Fix a nonnegative integer $n$ and a field $mathbb{F}$.
We shall use the following known fact:
Theorem 1. Let $mathbb{K}$ be a commutative ring. Let $A$ be an $ntimes
n$-matrix over $mathbb{K}$. Let $xinmathbb{K}$. Then,
begin{align}
detleft( A+xI_n right) & =sum_{Psubseteqleft{ 1,2,ldots
,nright} }detleft( A_{P,P}right) x^{n-leftvert Prightvert
}
label{darij.eq.t1.1}
tag{1}
\
& =sum_{k=0}^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots
,nright} ;\leftvert Prightvert =n-k}}detleft( A_{P,P}right)
right) x^{k}.
label{darij.eq.t1.2}
tag{2}
end{align}
Theorem 1 appears, e.g., as Corollary 6.164 in my Notes on the combinatorial
fundamentals of algebra, in the version of 10th January
2019 (where I
use the more cumbersome notation $operatorname*{sub}nolimits_{wleft(
Pright) }^{wleft( Pright) }A$ instead of $A_{P,P}$). $blacksquare$
Corollary 2. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$.
Let $rinleft{ 0,1,ldots,nright} $. Consider the $ntimes n$-matrix
$tI_n +A$ over the polynomial ring $mathbb{F}left[ tright] $. Its
determinant $detleft( tI_n +Aright) $ is a polynomial in $mathbb{F}
left[ tright] $. Then,
begin{align}
& left( text{the sum of all principal }rtimes rtext{-minors of }Aright)
nonumber\
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) .
end{align}
Proof of Corollary 2. We have $rinleft{ 0,1,ldots,nright} $, thus
$n-rinleft{ 0,1,ldots,nright} $. Also, from $tI_n +A=A+tI_n $, we
obtain
begin{equation}
detleft( tI_n +Aright) =detleft( A+tI_n right) =sum_{k=0}
^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots,nright}
;\leftvert Prightvert =n-k}}detleft( A_{P,P}right) right) t^{k}
end{equation}
(by eqref{darij.eq.t1.2}, applied to $mathbb{K}=mathbb{F}left[ tright]
$ and $x=t$). Hence, for each $kinleft{ 0,1,ldots,nright} $, we have
begin{align*}
& left( text{the coefficient of }t^{k}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-k}}detleft( A_{P,P}right) .
end{align*}
We can apply this to $k=n-r$ (since $n-rinleft{ 0,1,ldots,nright} $)
and thus obtain
begin{align*}
& left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-left( n-rright) }}detleft( A_{P,P}right)
=sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =r}}detleft( A_{P,P}right) qquadleft( text{since
}n-left( n-rright) =rright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright)
end{align*}
(by the definition of principal minors). This proves Corollary 2.
$blacksquare$
Lemma 3. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$. Let
$lambda_{1},lambda_{2},ldots,lambda_{n}$ be the eigenvalues of $A$. We
assume that all $n$ of them lie in $mathbb{F}$. Then, in the polynomial ring
$mathbb{F}left[ tright] $, we have
begin{equation}
detleft( tI_n +Aright) =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) .
end{equation}
Proof of Lemma 3. The eigenvalues of $A$ are defined as the roots of the
characteristic polynomial $detleft( tI_n -Aright) $ of $A$. (You may be
used to defining the characteristic polynomial of $A$ as $detleft(
A-tI_n right) $ instead, but this makes no difference: The polynomials
$detleft( tI_n -Aright) $ and $detleft( A-tI_n right) $ differ
only by a factor of $left( -1right) ^{n}$ (in fact, we have $detleft(
A-tI_n right) =left( -1right) ^{n}detleft( tI_n -Aright) $), and
thus have the same roots.)
Also, the characteristic polynomial $detleft( tI_n -Aright) $ of $A$ is
a monic polynomial of degree $n$. And we know that its roots are the
eigenvalues of $A$, which are exactly $lambda_{1},lambda_{2},ldots
,lambda_{n}$ (with multiplicities). Thus, $detleft( tI_n -Aright) $ is
a monic polynomial of degree $n$ and has roots $lambda_{1},lambda_{2}
,ldots,lambda_{n}$. Thus,
begin{equation}
detleft( tI_n -Aright) =left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right)
end{equation}
(because the only monic polynomial of degree $n$ that has roots $lambda
_{1},lambda_{2},ldots,lambda_{n}$ is $left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right) $). Substituting
$-t$ for $t$ in this equality, we obtain
begin{align*}
detleft( left( -tright) I_n -Aright) & =left( -t-lambda
_{1}right) left( -t-lambda_{2}right) cdotsleft( -t-lambda
_{n}right) \
& =prod_{i=1}^{n}underbrace{left( -t-lambda_{i}right) }_{=-left(
t+lambda_{i}right) }=prod_{i=1}^{n}left( -left( t+lambda_{i}right)
right) \
& =left( -1right) ^{n}underbrace{prod_{i=1}^{n}left( t+lambda
_{i}right) }_{=left( t+lambda_{1}right) left( t+lambda_{2}right)
cdotsleft( t+lambda_{n}right) } \
& = left( -1right) ^{n}left(
t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{align*}
Comparing this with
begin{equation}
detleft( underbrace{left( -tright) I_n -A}_{=-left( tI_n
+Aright) }right) =detleft( -left( tI_n +Aright) right) =left(
-1right) ^{n}detleft( tI_n +Aright) ,
end{equation}
we obtain
begin{equation}
left( -1right) ^{n}detleft( tI_n +Aright) =left( -1right)
^{n}left( t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{equation}
We can divide both sides of this equality by $left( -1right) ^{n}$, and
thus obtain $detleft( tI_n +Aright) =left( t+lambda_{1}right)
left( t+lambda_{2}right) cdotsleft( t+lambda_{n}right) $. This
proves Lemma 3. $blacksquare$
Let us also notice a completely trivial fact:
Lemma 4. Let $mathbb{F}$ be a field. Let $m$ and $k$ be nonnegative
integers. Let $pinmathbb{F}left[ tright] $ be a polynomial. Then,
begin{align*}
& left( text{the coefficient of }t^{m+k}text{ in the polynomial }pcdot
t^{k}right) \
& =left( text{the coefficient of }t^{m}text{ in the polynomial }pright)
.
end{align*}
Proof of Lemma 4. The coefficients of the polynomial $pcdot t^{k}$ are
precisely the coefficients of $p$, shifted to the right by $k$ slots. This
yields Lemma 4. $blacksquare$
Now we can prove your claim:
Theorem 5. Let $A$ be a diagonalizable $ntimes n$-matrix over a field
$mathbb{F}$. Let $r=operatorname*{rank}A$. Then,
begin{align*}
& left( text{the product of all nonzero eigenvalues of }Aright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) .
end{align*}
(Here, the product of all nonzero eigenvalues takes the multiplicities of the
eigenvalues into account.)
Proof of Theorem 5. First of all, all $n$ eigenvalues of $A$ belong to
$mathbb{F}$ (since $A$ is diagonalizable). Moreover, $r=operatorname*{rank}
Ainleft{ 0,1,ldots,nright} $ (since $A$ is an $ntimes n$-matrix).
The matrix $A$ is diagonalizable; in other words, it is similar to a diagonal
matrix $Dinmathbb{F}^{ntimes n}$. Consider this $D$. Of course, the
diagonal entries of $D$ are the eigenvalues of $A$ (with multiplicities).
Since $A$ is similar to $D$, we have $operatorname*{rank}
A=operatorname*{rank}D$. But $D$ is diagonal; thus, its rank
$operatorname*{rank}D$ equals the number of nonzero diagonal entries of $D$.
In other words, $operatorname*{rank}D$ equals the number of nonzero
eigenvalues of $A$ (since the diagonal entries of $D$ are the eigenvalues of
$A$). In other words, $r$ equals the number of nonzero eigenvalues of $A$
(since $r=operatorname*{rank}A=operatorname*{rank}D$). In other words, the
matrix $A$ has exactly $r$ nonzero eigenvalues.
Label the eigenvalues of $A$ as $lambda_{1},lambda_{2},ldots,lambda_{n}$
(with multiplicities) in such a way that the first $r$ eigenvalues
$lambda_{1},lambda_{2},ldots,lambda_{r}$ are nonzero, while the remaining
$n-r$ eigenvalues $lambda_{r+1},lambda_{r+2},ldots,lambda_{n}$ are zero.
(This is clearly possible, since $A$ has exactly $r$ nonzero eigenvalues.)
Thus, $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$.
Lemma 3 yields
begin{align*}
detleft( tI_n +Aright) & =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) =prod_{i=1}
^{n}left( t+lambda_{i}right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right) cdotleft(
prod_{i=r+1}^{n}left( t+underbrace{lambda_{i}}
_{substack{=0\text{(since }lambda_{r+1},lambda_{r+2},ldots,lambda
_{n}text{ are zero)}}}right) right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right)
cdotunderbrace{left( prod_{i=r+1}^{n}tright) }_{=t^{n-r}}=left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}.
end{align*}
Now, Corollary 2 yields
begin{align*}
& left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial
}underbrace{detleft( tI_n +Aright) }_{=left( prod_{i=1}^{r}left(
t+lambda_{i}right) right) cdot t^{n-r}}right) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}right) \
& =left( text{the coefficient of }t^{0}text{ in the polynomial }
prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& qquadleft( text{by Lemma 4, applied to }m=0text{ and }k=n-rtext{ and
}p=prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& =left( text{the constant term of the polynomial }prod_{i=1}^{r}left(
t+lambda_{i}right) right) \
& =prod_{i=1}^{r}lambda_{i}=lambda_{1}lambda_{2}cdotslambda_{r}\
& =left( text{the product of all nonzero eigenvalues of }Aright)
end{align*}
(since $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$). This proves Theorem 5. $blacksquare$
Note that in the above proof of Theorem 5,
the diagonalizability of $A$ was used only to guarantee that $A$
has exactly $r$ nonzero eigenvalues and that all $n$ eigenvalues of $A$
belong to $mathbb{F}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2718258%2fis-sum-of-principal-minors-equals-to-pseudo-determinant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In order not to leave this question unanswered, let me prove the claim along
the lines I've suggested in the comments.
Let us agree on a few notations:
Let $n$ and $m$ be two nonnegative integers. Let $A=left( a_{i,j}right)
_{1leq ileq n, 1leq jleq m}$ be an $ntimes m$-matrix (over some ring).
Let $U=left{ u_{1}<u_{2}<cdots<u_{p}right} $ be a subset of $left{
1,2,ldots,nright} $, and let $V=left{ v_{1}<v_{2}<cdots<v_{q}right}
$ be a subset of $left{ 1,2,ldots,mright} $. Then, $A_{U,V}$ shall
denote the submatrix $left( a_{u_{i},v_{j}}right) _{1leq ileq p, 1leq
jleq q}$ of $A$. (This is the matrix obtained from $A$ by crossing out all
rows except for the rows numbered $u_{1},u_{2},ldots,u_{p}$ and crossing out
all columns except for the columns numbered $v_{1},v_{2},ldots,v_{q}$.) For
example,
begin{equation}
begin{pmatrix}
a_{1} & a_{2} & a_{3} & a_{4}\
b_{1} & b_{2} & b_{3} & b_{4}\
c_{1} & c_{2} & c_{3} & c_{4}\
d_{1} & d_{2} & d_{3} & d_{4}
end{pmatrix}
_{left{ 1,3,4right} ,left{ 2,4right} }
=
begin{pmatrix}
a_{2} & a_{4}\
c_{2} & c_{4}\
d_{2} & d_{4}
end{pmatrix} .
end{equation}If $n$ is a nonnegative integer, then $I_n$ will denote the $ntimes n$
identity matrix (over whatever ring we are working in).
Fix a nonnegative integer $n$ and a field $mathbb{F}$.
We shall use the following known fact:
Theorem 1. Let $mathbb{K}$ be a commutative ring. Let $A$ be an $ntimes
n$-matrix over $mathbb{K}$. Let $xinmathbb{K}$. Then,
begin{align}
detleft( A+xI_n right) & =sum_{Psubseteqleft{ 1,2,ldots
,nright} }detleft( A_{P,P}right) x^{n-leftvert Prightvert
}
label{darij.eq.t1.1}
tag{1}
\
& =sum_{k=0}^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots
,nright} ;\leftvert Prightvert =n-k}}detleft( A_{P,P}right)
right) x^{k}.
label{darij.eq.t1.2}
tag{2}
end{align}
Theorem 1 appears, e.g., as Corollary 6.164 in my Notes on the combinatorial
fundamentals of algebra, in the version of 10th January
2019 (where I
use the more cumbersome notation $operatorname*{sub}nolimits_{wleft(
Pright) }^{wleft( Pright) }A$ instead of $A_{P,P}$). $blacksquare$
Corollary 2. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$.
Let $rinleft{ 0,1,ldots,nright} $. Consider the $ntimes n$-matrix
$tI_n +A$ over the polynomial ring $mathbb{F}left[ tright] $. Its
determinant $detleft( tI_n +Aright) $ is a polynomial in $mathbb{F}
left[ tright] $. Then,
begin{align}
& left( text{the sum of all principal }rtimes rtext{-minors of }Aright)
nonumber\
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) .
end{align}
Proof of Corollary 2. We have $rinleft{ 0,1,ldots,nright} $, thus
$n-rinleft{ 0,1,ldots,nright} $. Also, from $tI_n +A=A+tI_n $, we
obtain
begin{equation}
detleft( tI_n +Aright) =detleft( A+tI_n right) =sum_{k=0}
^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots,nright}
;\leftvert Prightvert =n-k}}detleft( A_{P,P}right) right) t^{k}
end{equation}
(by eqref{darij.eq.t1.2}, applied to $mathbb{K}=mathbb{F}left[ tright]
$ and $x=t$). Hence, for each $kinleft{ 0,1,ldots,nright} $, we have
begin{align*}
& left( text{the coefficient of }t^{k}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-k}}detleft( A_{P,P}right) .
end{align*}
We can apply this to $k=n-r$ (since $n-rinleft{ 0,1,ldots,nright} $)
and thus obtain
begin{align*}
& left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-left( n-rright) }}detleft( A_{P,P}right)
=sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =r}}detleft( A_{P,P}right) qquadleft( text{since
}n-left( n-rright) =rright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright)
end{align*}
(by the definition of principal minors). This proves Corollary 2.
$blacksquare$
Lemma 3. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$. Let
$lambda_{1},lambda_{2},ldots,lambda_{n}$ be the eigenvalues of $A$. We
assume that all $n$ of them lie in $mathbb{F}$. Then, in the polynomial ring
$mathbb{F}left[ tright] $, we have
begin{equation}
detleft( tI_n +Aright) =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) .
end{equation}
Proof of Lemma 3. The eigenvalues of $A$ are defined as the roots of the
characteristic polynomial $detleft( tI_n -Aright) $ of $A$. (You may be
used to defining the characteristic polynomial of $A$ as $detleft(
A-tI_n right) $ instead, but this makes no difference: The polynomials
$detleft( tI_n -Aright) $ and $detleft( A-tI_n right) $ differ
only by a factor of $left( -1right) ^{n}$ (in fact, we have $detleft(
A-tI_n right) =left( -1right) ^{n}detleft( tI_n -Aright) $), and
thus have the same roots.)
Also, the characteristic polynomial $detleft( tI_n -Aright) $ of $A$ is
a monic polynomial of degree $n$. And we know that its roots are the
eigenvalues of $A$, which are exactly $lambda_{1},lambda_{2},ldots
,lambda_{n}$ (with multiplicities). Thus, $detleft( tI_n -Aright) $ is
a monic polynomial of degree $n$ and has roots $lambda_{1},lambda_{2}
,ldots,lambda_{n}$. Thus,
begin{equation}
detleft( tI_n -Aright) =left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right)
end{equation}
(because the only monic polynomial of degree $n$ that has roots $lambda
_{1},lambda_{2},ldots,lambda_{n}$ is $left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right) $). Substituting
$-t$ for $t$ in this equality, we obtain
begin{align*}
detleft( left( -tright) I_n -Aright) & =left( -t-lambda
_{1}right) left( -t-lambda_{2}right) cdotsleft( -t-lambda
_{n}right) \
& =prod_{i=1}^{n}underbrace{left( -t-lambda_{i}right) }_{=-left(
t+lambda_{i}right) }=prod_{i=1}^{n}left( -left( t+lambda_{i}right)
right) \
& =left( -1right) ^{n}underbrace{prod_{i=1}^{n}left( t+lambda
_{i}right) }_{=left( t+lambda_{1}right) left( t+lambda_{2}right)
cdotsleft( t+lambda_{n}right) } \
& = left( -1right) ^{n}left(
t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{align*}
Comparing this with
begin{equation}
detleft( underbrace{left( -tright) I_n -A}_{=-left( tI_n
+Aright) }right) =detleft( -left( tI_n +Aright) right) =left(
-1right) ^{n}detleft( tI_n +Aright) ,
end{equation}
we obtain
begin{equation}
left( -1right) ^{n}detleft( tI_n +Aright) =left( -1right)
^{n}left( t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{equation}
We can divide both sides of this equality by $left( -1right) ^{n}$, and
thus obtain $detleft( tI_n +Aright) =left( t+lambda_{1}right)
left( t+lambda_{2}right) cdotsleft( t+lambda_{n}right) $. This
proves Lemma 3. $blacksquare$
Let us also notice a completely trivial fact:
Lemma 4. Let $mathbb{F}$ be a field. Let $m$ and $k$ be nonnegative
integers. Let $pinmathbb{F}left[ tright] $ be a polynomial. Then,
begin{align*}
& left( text{the coefficient of }t^{m+k}text{ in the polynomial }pcdot
t^{k}right) \
& =left( text{the coefficient of }t^{m}text{ in the polynomial }pright)
.
end{align*}
Proof of Lemma 4. The coefficients of the polynomial $pcdot t^{k}$ are
precisely the coefficients of $p$, shifted to the right by $k$ slots. This
yields Lemma 4. $blacksquare$
Now we can prove your claim:
Theorem 5. Let $A$ be a diagonalizable $ntimes n$-matrix over a field
$mathbb{F}$. Let $r=operatorname*{rank}A$. Then,
begin{align*}
& left( text{the product of all nonzero eigenvalues of }Aright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) .
end{align*}
(Here, the product of all nonzero eigenvalues takes the multiplicities of the
eigenvalues into account.)
Proof of Theorem 5. First of all, all $n$ eigenvalues of $A$ belong to
$mathbb{F}$ (since $A$ is diagonalizable). Moreover, $r=operatorname*{rank}
Ainleft{ 0,1,ldots,nright} $ (since $A$ is an $ntimes n$-matrix).
The matrix $A$ is diagonalizable; in other words, it is similar to a diagonal
matrix $Dinmathbb{F}^{ntimes n}$. Consider this $D$. Of course, the
diagonal entries of $D$ are the eigenvalues of $A$ (with multiplicities).
Since $A$ is similar to $D$, we have $operatorname*{rank}
A=operatorname*{rank}D$. But $D$ is diagonal; thus, its rank
$operatorname*{rank}D$ equals the number of nonzero diagonal entries of $D$.
In other words, $operatorname*{rank}D$ equals the number of nonzero
eigenvalues of $A$ (since the diagonal entries of $D$ are the eigenvalues of
$A$). In other words, $r$ equals the number of nonzero eigenvalues of $A$
(since $r=operatorname*{rank}A=operatorname*{rank}D$). In other words, the
matrix $A$ has exactly $r$ nonzero eigenvalues.
Label the eigenvalues of $A$ as $lambda_{1},lambda_{2},ldots,lambda_{n}$
(with multiplicities) in such a way that the first $r$ eigenvalues
$lambda_{1},lambda_{2},ldots,lambda_{r}$ are nonzero, while the remaining
$n-r$ eigenvalues $lambda_{r+1},lambda_{r+2},ldots,lambda_{n}$ are zero.
(This is clearly possible, since $A$ has exactly $r$ nonzero eigenvalues.)
Thus, $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$.
Lemma 3 yields
begin{align*}
detleft( tI_n +Aright) & =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) =prod_{i=1}
^{n}left( t+lambda_{i}right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right) cdotleft(
prod_{i=r+1}^{n}left( t+underbrace{lambda_{i}}
_{substack{=0\text{(since }lambda_{r+1},lambda_{r+2},ldots,lambda
_{n}text{ are zero)}}}right) right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right)
cdotunderbrace{left( prod_{i=r+1}^{n}tright) }_{=t^{n-r}}=left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}.
end{align*}
Now, Corollary 2 yields
begin{align*}
& left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial
}underbrace{detleft( tI_n +Aright) }_{=left( prod_{i=1}^{r}left(
t+lambda_{i}right) right) cdot t^{n-r}}right) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}right) \
& =left( text{the coefficient of }t^{0}text{ in the polynomial }
prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& qquadleft( text{by Lemma 4, applied to }m=0text{ and }k=n-rtext{ and
}p=prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& =left( text{the constant term of the polynomial }prod_{i=1}^{r}left(
t+lambda_{i}right) right) \
& =prod_{i=1}^{r}lambda_{i}=lambda_{1}lambda_{2}cdotslambda_{r}\
& =left( text{the product of all nonzero eigenvalues of }Aright)
end{align*}
(since $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$). This proves Theorem 5. $blacksquare$
Note that in the above proof of Theorem 5,
the diagonalizability of $A$ was used only to guarantee that $A$
has exactly $r$ nonzero eigenvalues and that all $n$ eigenvalues of $A$
belong to $mathbb{F}$.
$endgroup$
add a comment |
$begingroup$
In order not to leave this question unanswered, let me prove the claim along
the lines I've suggested in the comments.
Let us agree on a few notations:
Let $n$ and $m$ be two nonnegative integers. Let $A=left( a_{i,j}right)
_{1leq ileq n, 1leq jleq m}$ be an $ntimes m$-matrix (over some ring).
Let $U=left{ u_{1}<u_{2}<cdots<u_{p}right} $ be a subset of $left{
1,2,ldots,nright} $, and let $V=left{ v_{1}<v_{2}<cdots<v_{q}right}
$ be a subset of $left{ 1,2,ldots,mright} $. Then, $A_{U,V}$ shall
denote the submatrix $left( a_{u_{i},v_{j}}right) _{1leq ileq p, 1leq
jleq q}$ of $A$. (This is the matrix obtained from $A$ by crossing out all
rows except for the rows numbered $u_{1},u_{2},ldots,u_{p}$ and crossing out
all columns except for the columns numbered $v_{1},v_{2},ldots,v_{q}$.) For
example,
begin{equation}
begin{pmatrix}
a_{1} & a_{2} & a_{3} & a_{4}\
b_{1} & b_{2} & b_{3} & b_{4}\
c_{1} & c_{2} & c_{3} & c_{4}\
d_{1} & d_{2} & d_{3} & d_{4}
end{pmatrix}
_{left{ 1,3,4right} ,left{ 2,4right} }
=
begin{pmatrix}
a_{2} & a_{4}\
c_{2} & c_{4}\
d_{2} & d_{4}
end{pmatrix} .
end{equation}If $n$ is a nonnegative integer, then $I_n$ will denote the $ntimes n$
identity matrix (over whatever ring we are working in).
Fix a nonnegative integer $n$ and a field $mathbb{F}$.
We shall use the following known fact:
Theorem 1. Let $mathbb{K}$ be a commutative ring. Let $A$ be an $ntimes
n$-matrix over $mathbb{K}$. Let $xinmathbb{K}$. Then,
begin{align}
detleft( A+xI_n right) & =sum_{Psubseteqleft{ 1,2,ldots
,nright} }detleft( A_{P,P}right) x^{n-leftvert Prightvert
}
label{darij.eq.t1.1}
tag{1}
\
& =sum_{k=0}^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots
,nright} ;\leftvert Prightvert =n-k}}detleft( A_{P,P}right)
right) x^{k}.
label{darij.eq.t1.2}
tag{2}
end{align}
Theorem 1 appears, e.g., as Corollary 6.164 in my Notes on the combinatorial
fundamentals of algebra, in the version of 10th January
2019 (where I
use the more cumbersome notation $operatorname*{sub}nolimits_{wleft(
Pright) }^{wleft( Pright) }A$ instead of $A_{P,P}$). $blacksquare$
Corollary 2. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$.
Let $rinleft{ 0,1,ldots,nright} $. Consider the $ntimes n$-matrix
$tI_n +A$ over the polynomial ring $mathbb{F}left[ tright] $. Its
determinant $detleft( tI_n +Aright) $ is a polynomial in $mathbb{F}
left[ tright] $. Then,
begin{align}
& left( text{the sum of all principal }rtimes rtext{-minors of }Aright)
nonumber\
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) .
end{align}
Proof of Corollary 2. We have $rinleft{ 0,1,ldots,nright} $, thus
$n-rinleft{ 0,1,ldots,nright} $. Also, from $tI_n +A=A+tI_n $, we
obtain
begin{equation}
detleft( tI_n +Aright) =detleft( A+tI_n right) =sum_{k=0}
^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots,nright}
;\leftvert Prightvert =n-k}}detleft( A_{P,P}right) right) t^{k}
end{equation}
(by eqref{darij.eq.t1.2}, applied to $mathbb{K}=mathbb{F}left[ tright]
$ and $x=t$). Hence, for each $kinleft{ 0,1,ldots,nright} $, we have
begin{align*}
& left( text{the coefficient of }t^{k}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-k}}detleft( A_{P,P}right) .
end{align*}
We can apply this to $k=n-r$ (since $n-rinleft{ 0,1,ldots,nright} $)
and thus obtain
begin{align*}
& left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-left( n-rright) }}detleft( A_{P,P}right)
=sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =r}}detleft( A_{P,P}right) qquadleft( text{since
}n-left( n-rright) =rright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright)
end{align*}
(by the definition of principal minors). This proves Corollary 2.
$blacksquare$
Lemma 3. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$. Let
$lambda_{1},lambda_{2},ldots,lambda_{n}$ be the eigenvalues of $A$. We
assume that all $n$ of them lie in $mathbb{F}$. Then, in the polynomial ring
$mathbb{F}left[ tright] $, we have
begin{equation}
detleft( tI_n +Aright) =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) .
end{equation}
Proof of Lemma 3. The eigenvalues of $A$ are defined as the roots of the
characteristic polynomial $detleft( tI_n -Aright) $ of $A$. (You may be
used to defining the characteristic polynomial of $A$ as $detleft(
A-tI_n right) $ instead, but this makes no difference: The polynomials
$detleft( tI_n -Aright) $ and $detleft( A-tI_n right) $ differ
only by a factor of $left( -1right) ^{n}$ (in fact, we have $detleft(
A-tI_n right) =left( -1right) ^{n}detleft( tI_n -Aright) $), and
thus have the same roots.)
Also, the characteristic polynomial $detleft( tI_n -Aright) $ of $A$ is
a monic polynomial of degree $n$. And we know that its roots are the
eigenvalues of $A$, which are exactly $lambda_{1},lambda_{2},ldots
,lambda_{n}$ (with multiplicities). Thus, $detleft( tI_n -Aright) $ is
a monic polynomial of degree $n$ and has roots $lambda_{1},lambda_{2}
,ldots,lambda_{n}$. Thus,
begin{equation}
detleft( tI_n -Aright) =left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right)
end{equation}
(because the only monic polynomial of degree $n$ that has roots $lambda
_{1},lambda_{2},ldots,lambda_{n}$ is $left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right) $). Substituting
$-t$ for $t$ in this equality, we obtain
begin{align*}
detleft( left( -tright) I_n -Aright) & =left( -t-lambda
_{1}right) left( -t-lambda_{2}right) cdotsleft( -t-lambda
_{n}right) \
& =prod_{i=1}^{n}underbrace{left( -t-lambda_{i}right) }_{=-left(
t+lambda_{i}right) }=prod_{i=1}^{n}left( -left( t+lambda_{i}right)
right) \
& =left( -1right) ^{n}underbrace{prod_{i=1}^{n}left( t+lambda
_{i}right) }_{=left( t+lambda_{1}right) left( t+lambda_{2}right)
cdotsleft( t+lambda_{n}right) } \
& = left( -1right) ^{n}left(
t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{align*}
Comparing this with
begin{equation}
detleft( underbrace{left( -tright) I_n -A}_{=-left( tI_n
+Aright) }right) =detleft( -left( tI_n +Aright) right) =left(
-1right) ^{n}detleft( tI_n +Aright) ,
end{equation}
we obtain
begin{equation}
left( -1right) ^{n}detleft( tI_n +Aright) =left( -1right)
^{n}left( t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{equation}
We can divide both sides of this equality by $left( -1right) ^{n}$, and
thus obtain $detleft( tI_n +Aright) =left( t+lambda_{1}right)
left( t+lambda_{2}right) cdotsleft( t+lambda_{n}right) $. This
proves Lemma 3. $blacksquare$
Let us also notice a completely trivial fact:
Lemma 4. Let $mathbb{F}$ be a field. Let $m$ and $k$ be nonnegative
integers. Let $pinmathbb{F}left[ tright] $ be a polynomial. Then,
begin{align*}
& left( text{the coefficient of }t^{m+k}text{ in the polynomial }pcdot
t^{k}right) \
& =left( text{the coefficient of }t^{m}text{ in the polynomial }pright)
.
end{align*}
Proof of Lemma 4. The coefficients of the polynomial $pcdot t^{k}$ are
precisely the coefficients of $p$, shifted to the right by $k$ slots. This
yields Lemma 4. $blacksquare$
Now we can prove your claim:
Theorem 5. Let $A$ be a diagonalizable $ntimes n$-matrix over a field
$mathbb{F}$. Let $r=operatorname*{rank}A$. Then,
begin{align*}
& left( text{the product of all nonzero eigenvalues of }Aright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) .
end{align*}
(Here, the product of all nonzero eigenvalues takes the multiplicities of the
eigenvalues into account.)
Proof of Theorem 5. First of all, all $n$ eigenvalues of $A$ belong to
$mathbb{F}$ (since $A$ is diagonalizable). Moreover, $r=operatorname*{rank}
Ainleft{ 0,1,ldots,nright} $ (since $A$ is an $ntimes n$-matrix).
The matrix $A$ is diagonalizable; in other words, it is similar to a diagonal
matrix $Dinmathbb{F}^{ntimes n}$. Consider this $D$. Of course, the
diagonal entries of $D$ are the eigenvalues of $A$ (with multiplicities).
Since $A$ is similar to $D$, we have $operatorname*{rank}
A=operatorname*{rank}D$. But $D$ is diagonal; thus, its rank
$operatorname*{rank}D$ equals the number of nonzero diagonal entries of $D$.
In other words, $operatorname*{rank}D$ equals the number of nonzero
eigenvalues of $A$ (since the diagonal entries of $D$ are the eigenvalues of
$A$). In other words, $r$ equals the number of nonzero eigenvalues of $A$
(since $r=operatorname*{rank}A=operatorname*{rank}D$). In other words, the
matrix $A$ has exactly $r$ nonzero eigenvalues.
Label the eigenvalues of $A$ as $lambda_{1},lambda_{2},ldots,lambda_{n}$
(with multiplicities) in such a way that the first $r$ eigenvalues
$lambda_{1},lambda_{2},ldots,lambda_{r}$ are nonzero, while the remaining
$n-r$ eigenvalues $lambda_{r+1},lambda_{r+2},ldots,lambda_{n}$ are zero.
(This is clearly possible, since $A$ has exactly $r$ nonzero eigenvalues.)
Thus, $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$.
Lemma 3 yields
begin{align*}
detleft( tI_n +Aright) & =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) =prod_{i=1}
^{n}left( t+lambda_{i}right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right) cdotleft(
prod_{i=r+1}^{n}left( t+underbrace{lambda_{i}}
_{substack{=0\text{(since }lambda_{r+1},lambda_{r+2},ldots,lambda
_{n}text{ are zero)}}}right) right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right)
cdotunderbrace{left( prod_{i=r+1}^{n}tright) }_{=t^{n-r}}=left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}.
end{align*}
Now, Corollary 2 yields
begin{align*}
& left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial
}underbrace{detleft( tI_n +Aright) }_{=left( prod_{i=1}^{r}left(
t+lambda_{i}right) right) cdot t^{n-r}}right) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}right) \
& =left( text{the coefficient of }t^{0}text{ in the polynomial }
prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& qquadleft( text{by Lemma 4, applied to }m=0text{ and }k=n-rtext{ and
}p=prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& =left( text{the constant term of the polynomial }prod_{i=1}^{r}left(
t+lambda_{i}right) right) \
& =prod_{i=1}^{r}lambda_{i}=lambda_{1}lambda_{2}cdotslambda_{r}\
& =left( text{the product of all nonzero eigenvalues of }Aright)
end{align*}
(since $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$). This proves Theorem 5. $blacksquare$
Note that in the above proof of Theorem 5,
the diagonalizability of $A$ was used only to guarantee that $A$
has exactly $r$ nonzero eigenvalues and that all $n$ eigenvalues of $A$
belong to $mathbb{F}$.
$endgroup$
add a comment |
$begingroup$
In order not to leave this question unanswered, let me prove the claim along
the lines I've suggested in the comments.
Let us agree on a few notations:
Let $n$ and $m$ be two nonnegative integers. Let $A=left( a_{i,j}right)
_{1leq ileq n, 1leq jleq m}$ be an $ntimes m$-matrix (over some ring).
Let $U=left{ u_{1}<u_{2}<cdots<u_{p}right} $ be a subset of $left{
1,2,ldots,nright} $, and let $V=left{ v_{1}<v_{2}<cdots<v_{q}right}
$ be a subset of $left{ 1,2,ldots,mright} $. Then, $A_{U,V}$ shall
denote the submatrix $left( a_{u_{i},v_{j}}right) _{1leq ileq p, 1leq
jleq q}$ of $A$. (This is the matrix obtained from $A$ by crossing out all
rows except for the rows numbered $u_{1},u_{2},ldots,u_{p}$ and crossing out
all columns except for the columns numbered $v_{1},v_{2},ldots,v_{q}$.) For
example,
begin{equation}
begin{pmatrix}
a_{1} & a_{2} & a_{3} & a_{4}\
b_{1} & b_{2} & b_{3} & b_{4}\
c_{1} & c_{2} & c_{3} & c_{4}\
d_{1} & d_{2} & d_{3} & d_{4}
end{pmatrix}
_{left{ 1,3,4right} ,left{ 2,4right} }
=
begin{pmatrix}
a_{2} & a_{4}\
c_{2} & c_{4}\
d_{2} & d_{4}
end{pmatrix} .
end{equation}If $n$ is a nonnegative integer, then $I_n$ will denote the $ntimes n$
identity matrix (over whatever ring we are working in).
Fix a nonnegative integer $n$ and a field $mathbb{F}$.
We shall use the following known fact:
Theorem 1. Let $mathbb{K}$ be a commutative ring. Let $A$ be an $ntimes
n$-matrix over $mathbb{K}$. Let $xinmathbb{K}$. Then,
begin{align}
detleft( A+xI_n right) & =sum_{Psubseteqleft{ 1,2,ldots
,nright} }detleft( A_{P,P}right) x^{n-leftvert Prightvert
}
label{darij.eq.t1.1}
tag{1}
\
& =sum_{k=0}^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots
,nright} ;\leftvert Prightvert =n-k}}detleft( A_{P,P}right)
right) x^{k}.
label{darij.eq.t1.2}
tag{2}
end{align}
Theorem 1 appears, e.g., as Corollary 6.164 in my Notes on the combinatorial
fundamentals of algebra, in the version of 10th January
2019 (where I
use the more cumbersome notation $operatorname*{sub}nolimits_{wleft(
Pright) }^{wleft( Pright) }A$ instead of $A_{P,P}$). $blacksquare$
Corollary 2. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$.
Let $rinleft{ 0,1,ldots,nright} $. Consider the $ntimes n$-matrix
$tI_n +A$ over the polynomial ring $mathbb{F}left[ tright] $. Its
determinant $detleft( tI_n +Aright) $ is a polynomial in $mathbb{F}
left[ tright] $. Then,
begin{align}
& left( text{the sum of all principal }rtimes rtext{-minors of }Aright)
nonumber\
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) .
end{align}
Proof of Corollary 2. We have $rinleft{ 0,1,ldots,nright} $, thus
$n-rinleft{ 0,1,ldots,nright} $. Also, from $tI_n +A=A+tI_n $, we
obtain
begin{equation}
detleft( tI_n +Aright) =detleft( A+tI_n right) =sum_{k=0}
^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots,nright}
;\leftvert Prightvert =n-k}}detleft( A_{P,P}right) right) t^{k}
end{equation}
(by eqref{darij.eq.t1.2}, applied to $mathbb{K}=mathbb{F}left[ tright]
$ and $x=t$). Hence, for each $kinleft{ 0,1,ldots,nright} $, we have
begin{align*}
& left( text{the coefficient of }t^{k}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-k}}detleft( A_{P,P}right) .
end{align*}
We can apply this to $k=n-r$ (since $n-rinleft{ 0,1,ldots,nright} $)
and thus obtain
begin{align*}
& left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-left( n-rright) }}detleft( A_{P,P}right)
=sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =r}}detleft( A_{P,P}right) qquadleft( text{since
}n-left( n-rright) =rright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright)
end{align*}
(by the definition of principal minors). This proves Corollary 2.
$blacksquare$
Lemma 3. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$. Let
$lambda_{1},lambda_{2},ldots,lambda_{n}$ be the eigenvalues of $A$. We
assume that all $n$ of them lie in $mathbb{F}$. Then, in the polynomial ring
$mathbb{F}left[ tright] $, we have
begin{equation}
detleft( tI_n +Aright) =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) .
end{equation}
Proof of Lemma 3. The eigenvalues of $A$ are defined as the roots of the
characteristic polynomial $detleft( tI_n -Aright) $ of $A$. (You may be
used to defining the characteristic polynomial of $A$ as $detleft(
A-tI_n right) $ instead, but this makes no difference: The polynomials
$detleft( tI_n -Aright) $ and $detleft( A-tI_n right) $ differ
only by a factor of $left( -1right) ^{n}$ (in fact, we have $detleft(
A-tI_n right) =left( -1right) ^{n}detleft( tI_n -Aright) $), and
thus have the same roots.)
Also, the characteristic polynomial $detleft( tI_n -Aright) $ of $A$ is
a monic polynomial of degree $n$. And we know that its roots are the
eigenvalues of $A$, which are exactly $lambda_{1},lambda_{2},ldots
,lambda_{n}$ (with multiplicities). Thus, $detleft( tI_n -Aright) $ is
a monic polynomial of degree $n$ and has roots $lambda_{1},lambda_{2}
,ldots,lambda_{n}$. Thus,
begin{equation}
detleft( tI_n -Aright) =left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right)
end{equation}
(because the only monic polynomial of degree $n$ that has roots $lambda
_{1},lambda_{2},ldots,lambda_{n}$ is $left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right) $). Substituting
$-t$ for $t$ in this equality, we obtain
begin{align*}
detleft( left( -tright) I_n -Aright) & =left( -t-lambda
_{1}right) left( -t-lambda_{2}right) cdotsleft( -t-lambda
_{n}right) \
& =prod_{i=1}^{n}underbrace{left( -t-lambda_{i}right) }_{=-left(
t+lambda_{i}right) }=prod_{i=1}^{n}left( -left( t+lambda_{i}right)
right) \
& =left( -1right) ^{n}underbrace{prod_{i=1}^{n}left( t+lambda
_{i}right) }_{=left( t+lambda_{1}right) left( t+lambda_{2}right)
cdotsleft( t+lambda_{n}right) } \
& = left( -1right) ^{n}left(
t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{align*}
Comparing this with
begin{equation}
detleft( underbrace{left( -tright) I_n -A}_{=-left( tI_n
+Aright) }right) =detleft( -left( tI_n +Aright) right) =left(
-1right) ^{n}detleft( tI_n +Aright) ,
end{equation}
we obtain
begin{equation}
left( -1right) ^{n}detleft( tI_n +Aright) =left( -1right)
^{n}left( t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{equation}
We can divide both sides of this equality by $left( -1right) ^{n}$, and
thus obtain $detleft( tI_n +Aright) =left( t+lambda_{1}right)
left( t+lambda_{2}right) cdotsleft( t+lambda_{n}right) $. This
proves Lemma 3. $blacksquare$
Let us also notice a completely trivial fact:
Lemma 4. Let $mathbb{F}$ be a field. Let $m$ and $k$ be nonnegative
integers. Let $pinmathbb{F}left[ tright] $ be a polynomial. Then,
begin{align*}
& left( text{the coefficient of }t^{m+k}text{ in the polynomial }pcdot
t^{k}right) \
& =left( text{the coefficient of }t^{m}text{ in the polynomial }pright)
.
end{align*}
Proof of Lemma 4. The coefficients of the polynomial $pcdot t^{k}$ are
precisely the coefficients of $p$, shifted to the right by $k$ slots. This
yields Lemma 4. $blacksquare$
Now we can prove your claim:
Theorem 5. Let $A$ be a diagonalizable $ntimes n$-matrix over a field
$mathbb{F}$. Let $r=operatorname*{rank}A$. Then,
begin{align*}
& left( text{the product of all nonzero eigenvalues of }Aright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) .
end{align*}
(Here, the product of all nonzero eigenvalues takes the multiplicities of the
eigenvalues into account.)
Proof of Theorem 5. First of all, all $n$ eigenvalues of $A$ belong to
$mathbb{F}$ (since $A$ is diagonalizable). Moreover, $r=operatorname*{rank}
Ainleft{ 0,1,ldots,nright} $ (since $A$ is an $ntimes n$-matrix).
The matrix $A$ is diagonalizable; in other words, it is similar to a diagonal
matrix $Dinmathbb{F}^{ntimes n}$. Consider this $D$. Of course, the
diagonal entries of $D$ are the eigenvalues of $A$ (with multiplicities).
Since $A$ is similar to $D$, we have $operatorname*{rank}
A=operatorname*{rank}D$. But $D$ is diagonal; thus, its rank
$operatorname*{rank}D$ equals the number of nonzero diagonal entries of $D$.
In other words, $operatorname*{rank}D$ equals the number of nonzero
eigenvalues of $A$ (since the diagonal entries of $D$ are the eigenvalues of
$A$). In other words, $r$ equals the number of nonzero eigenvalues of $A$
(since $r=operatorname*{rank}A=operatorname*{rank}D$). In other words, the
matrix $A$ has exactly $r$ nonzero eigenvalues.
Label the eigenvalues of $A$ as $lambda_{1},lambda_{2},ldots,lambda_{n}$
(with multiplicities) in such a way that the first $r$ eigenvalues
$lambda_{1},lambda_{2},ldots,lambda_{r}$ are nonzero, while the remaining
$n-r$ eigenvalues $lambda_{r+1},lambda_{r+2},ldots,lambda_{n}$ are zero.
(This is clearly possible, since $A$ has exactly $r$ nonzero eigenvalues.)
Thus, $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$.
Lemma 3 yields
begin{align*}
detleft( tI_n +Aright) & =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) =prod_{i=1}
^{n}left( t+lambda_{i}right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right) cdotleft(
prod_{i=r+1}^{n}left( t+underbrace{lambda_{i}}
_{substack{=0\text{(since }lambda_{r+1},lambda_{r+2},ldots,lambda
_{n}text{ are zero)}}}right) right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right)
cdotunderbrace{left( prod_{i=r+1}^{n}tright) }_{=t^{n-r}}=left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}.
end{align*}
Now, Corollary 2 yields
begin{align*}
& left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial
}underbrace{detleft( tI_n +Aright) }_{=left( prod_{i=1}^{r}left(
t+lambda_{i}right) right) cdot t^{n-r}}right) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}right) \
& =left( text{the coefficient of }t^{0}text{ in the polynomial }
prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& qquadleft( text{by Lemma 4, applied to }m=0text{ and }k=n-rtext{ and
}p=prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& =left( text{the constant term of the polynomial }prod_{i=1}^{r}left(
t+lambda_{i}right) right) \
& =prod_{i=1}^{r}lambda_{i}=lambda_{1}lambda_{2}cdotslambda_{r}\
& =left( text{the product of all nonzero eigenvalues of }Aright)
end{align*}
(since $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$). This proves Theorem 5. $blacksquare$
Note that in the above proof of Theorem 5,
the diagonalizability of $A$ was used only to guarantee that $A$
has exactly $r$ nonzero eigenvalues and that all $n$ eigenvalues of $A$
belong to $mathbb{F}$.
$endgroup$
In order not to leave this question unanswered, let me prove the claim along
the lines I've suggested in the comments.
Let us agree on a few notations:
Let $n$ and $m$ be two nonnegative integers. Let $A=left( a_{i,j}right)
_{1leq ileq n, 1leq jleq m}$ be an $ntimes m$-matrix (over some ring).
Let $U=left{ u_{1}<u_{2}<cdots<u_{p}right} $ be a subset of $left{
1,2,ldots,nright} $, and let $V=left{ v_{1}<v_{2}<cdots<v_{q}right}
$ be a subset of $left{ 1,2,ldots,mright} $. Then, $A_{U,V}$ shall
denote the submatrix $left( a_{u_{i},v_{j}}right) _{1leq ileq p, 1leq
jleq q}$ of $A$. (This is the matrix obtained from $A$ by crossing out all
rows except for the rows numbered $u_{1},u_{2},ldots,u_{p}$ and crossing out
all columns except for the columns numbered $v_{1},v_{2},ldots,v_{q}$.) For
example,
begin{equation}
begin{pmatrix}
a_{1} & a_{2} & a_{3} & a_{4}\
b_{1} & b_{2} & b_{3} & b_{4}\
c_{1} & c_{2} & c_{3} & c_{4}\
d_{1} & d_{2} & d_{3} & d_{4}
end{pmatrix}
_{left{ 1,3,4right} ,left{ 2,4right} }
=
begin{pmatrix}
a_{2} & a_{4}\
c_{2} & c_{4}\
d_{2} & d_{4}
end{pmatrix} .
end{equation}If $n$ is a nonnegative integer, then $I_n$ will denote the $ntimes n$
identity matrix (over whatever ring we are working in).
Fix a nonnegative integer $n$ and a field $mathbb{F}$.
We shall use the following known fact:
Theorem 1. Let $mathbb{K}$ be a commutative ring. Let $A$ be an $ntimes
n$-matrix over $mathbb{K}$. Let $xinmathbb{K}$. Then,
begin{align}
detleft( A+xI_n right) & =sum_{Psubseteqleft{ 1,2,ldots
,nright} }detleft( A_{P,P}right) x^{n-leftvert Prightvert
}
label{darij.eq.t1.1}
tag{1}
\
& =sum_{k=0}^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots
,nright} ;\leftvert Prightvert =n-k}}detleft( A_{P,P}right)
right) x^{k}.
label{darij.eq.t1.2}
tag{2}
end{align}
Theorem 1 appears, e.g., as Corollary 6.164 in my Notes on the combinatorial
fundamentals of algebra, in the version of 10th January
2019 (where I
use the more cumbersome notation $operatorname*{sub}nolimits_{wleft(
Pright) }^{wleft( Pright) }A$ instead of $A_{P,P}$). $blacksquare$
Corollary 2. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$.
Let $rinleft{ 0,1,ldots,nright} $. Consider the $ntimes n$-matrix
$tI_n +A$ over the polynomial ring $mathbb{F}left[ tright] $. Its
determinant $detleft( tI_n +Aright) $ is a polynomial in $mathbb{F}
left[ tright] $. Then,
begin{align}
& left( text{the sum of all principal }rtimes rtext{-minors of }Aright)
nonumber\
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) .
end{align}
Proof of Corollary 2. We have $rinleft{ 0,1,ldots,nright} $, thus
$n-rinleft{ 0,1,ldots,nright} $. Also, from $tI_n +A=A+tI_n $, we
obtain
begin{equation}
detleft( tI_n +Aright) =detleft( A+tI_n right) =sum_{k=0}
^{n}left( sum_{substack{Psubseteqleft{ 1,2,ldots,nright}
;\leftvert Prightvert =n-k}}detleft( A_{P,P}right) right) t^{k}
end{equation}
(by eqref{darij.eq.t1.2}, applied to $mathbb{K}=mathbb{F}left[ tright]
$ and $x=t$). Hence, for each $kinleft{ 0,1,ldots,nright} $, we have
begin{align*}
& left( text{the coefficient of }t^{k}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-k}}detleft( A_{P,P}right) .
end{align*}
We can apply this to $k=n-r$ (since $n-rinleft{ 0,1,ldots,nright} $)
and thus obtain
begin{align*}
& left( text{the coefficient of }t^{n-r}text{ in the polynomial }
detleft( tI_n +Aright) right) \
& =sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =n-left( n-rright) }}detleft( A_{P,P}right)
=sum_{substack{Psubseteqleft{ 1,2,ldots,nright} ;\leftvert
Prightvert =r}}detleft( A_{P,P}right) qquadleft( text{since
}n-left( n-rright) =rright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright)
end{align*}
(by the definition of principal minors). This proves Corollary 2.
$blacksquare$
Lemma 3. Let $A$ be an $ntimes n$-matrix over a field $mathbb{F}$. Let
$lambda_{1},lambda_{2},ldots,lambda_{n}$ be the eigenvalues of $A$. We
assume that all $n$ of them lie in $mathbb{F}$. Then, in the polynomial ring
$mathbb{F}left[ tright] $, we have
begin{equation}
detleft( tI_n +Aright) =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) .
end{equation}
Proof of Lemma 3. The eigenvalues of $A$ are defined as the roots of the
characteristic polynomial $detleft( tI_n -Aright) $ of $A$. (You may be
used to defining the characteristic polynomial of $A$ as $detleft(
A-tI_n right) $ instead, but this makes no difference: The polynomials
$detleft( tI_n -Aright) $ and $detleft( A-tI_n right) $ differ
only by a factor of $left( -1right) ^{n}$ (in fact, we have $detleft(
A-tI_n right) =left( -1right) ^{n}detleft( tI_n -Aright) $), and
thus have the same roots.)
Also, the characteristic polynomial $detleft( tI_n -Aright) $ of $A$ is
a monic polynomial of degree $n$. And we know that its roots are the
eigenvalues of $A$, which are exactly $lambda_{1},lambda_{2},ldots
,lambda_{n}$ (with multiplicities). Thus, $detleft( tI_n -Aright) $ is
a monic polynomial of degree $n$ and has roots $lambda_{1},lambda_{2}
,ldots,lambda_{n}$. Thus,
begin{equation}
detleft( tI_n -Aright) =left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right)
end{equation}
(because the only monic polynomial of degree $n$ that has roots $lambda
_{1},lambda_{2},ldots,lambda_{n}$ is $left( t-lambda_{1}right) left(
t-lambda_{2}right) cdotsleft( t-lambda_{n}right) $). Substituting
$-t$ for $t$ in this equality, we obtain
begin{align*}
detleft( left( -tright) I_n -Aright) & =left( -t-lambda
_{1}right) left( -t-lambda_{2}right) cdotsleft( -t-lambda
_{n}right) \
& =prod_{i=1}^{n}underbrace{left( -t-lambda_{i}right) }_{=-left(
t+lambda_{i}right) }=prod_{i=1}^{n}left( -left( t+lambda_{i}right)
right) \
& =left( -1right) ^{n}underbrace{prod_{i=1}^{n}left( t+lambda
_{i}right) }_{=left( t+lambda_{1}right) left( t+lambda_{2}right)
cdotsleft( t+lambda_{n}right) } \
& = left( -1right) ^{n}left(
t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{align*}
Comparing this with
begin{equation}
detleft( underbrace{left( -tright) I_n -A}_{=-left( tI_n
+Aright) }right) =detleft( -left( tI_n +Aright) right) =left(
-1right) ^{n}detleft( tI_n +Aright) ,
end{equation}
we obtain
begin{equation}
left( -1right) ^{n}detleft( tI_n +Aright) =left( -1right)
^{n}left( t+lambda_{1}right) left( t+lambda_{2}right) cdotsleft(
t+lambda_{n}right) .
end{equation}
We can divide both sides of this equality by $left( -1right) ^{n}$, and
thus obtain $detleft( tI_n +Aright) =left( t+lambda_{1}right)
left( t+lambda_{2}right) cdotsleft( t+lambda_{n}right) $. This
proves Lemma 3. $blacksquare$
Let us also notice a completely trivial fact:
Lemma 4. Let $mathbb{F}$ be a field. Let $m$ and $k$ be nonnegative
integers. Let $pinmathbb{F}left[ tright] $ be a polynomial. Then,
begin{align*}
& left( text{the coefficient of }t^{m+k}text{ in the polynomial }pcdot
t^{k}right) \
& =left( text{the coefficient of }t^{m}text{ in the polynomial }pright)
.
end{align*}
Proof of Lemma 4. The coefficients of the polynomial $pcdot t^{k}$ are
precisely the coefficients of $p$, shifted to the right by $k$ slots. This
yields Lemma 4. $blacksquare$
Now we can prove your claim:
Theorem 5. Let $A$ be a diagonalizable $ntimes n$-matrix over a field
$mathbb{F}$. Let $r=operatorname*{rank}A$. Then,
begin{align*}
& left( text{the product of all nonzero eigenvalues of }Aright) \
& =left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) .
end{align*}
(Here, the product of all nonzero eigenvalues takes the multiplicities of the
eigenvalues into account.)
Proof of Theorem 5. First of all, all $n$ eigenvalues of $A$ belong to
$mathbb{F}$ (since $A$ is diagonalizable). Moreover, $r=operatorname*{rank}
Ainleft{ 0,1,ldots,nright} $ (since $A$ is an $ntimes n$-matrix).
The matrix $A$ is diagonalizable; in other words, it is similar to a diagonal
matrix $Dinmathbb{F}^{ntimes n}$. Consider this $D$. Of course, the
diagonal entries of $D$ are the eigenvalues of $A$ (with multiplicities).
Since $A$ is similar to $D$, we have $operatorname*{rank}
A=operatorname*{rank}D$. But $D$ is diagonal; thus, its rank
$operatorname*{rank}D$ equals the number of nonzero diagonal entries of $D$.
In other words, $operatorname*{rank}D$ equals the number of nonzero
eigenvalues of $A$ (since the diagonal entries of $D$ are the eigenvalues of
$A$). In other words, $r$ equals the number of nonzero eigenvalues of $A$
(since $r=operatorname*{rank}A=operatorname*{rank}D$). In other words, the
matrix $A$ has exactly $r$ nonzero eigenvalues.
Label the eigenvalues of $A$ as $lambda_{1},lambda_{2},ldots,lambda_{n}$
(with multiplicities) in such a way that the first $r$ eigenvalues
$lambda_{1},lambda_{2},ldots,lambda_{r}$ are nonzero, while the remaining
$n-r$ eigenvalues $lambda_{r+1},lambda_{r+2},ldots,lambda_{n}$ are zero.
(This is clearly possible, since $A$ has exactly $r$ nonzero eigenvalues.)
Thus, $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$.
Lemma 3 yields
begin{align*}
detleft( tI_n +Aright) & =left( t+lambda_{1}right) left(
t+lambda_{2}right) cdotsleft( t+lambda_{n}right) =prod_{i=1}
^{n}left( t+lambda_{i}right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right) cdotleft(
prod_{i=r+1}^{n}left( t+underbrace{lambda_{i}}
_{substack{=0\text{(since }lambda_{r+1},lambda_{r+2},ldots,lambda
_{n}text{ are zero)}}}right) right) \
& =left( prod_{i=1}^{r}left( t+lambda_{i}right) right)
cdotunderbrace{left( prod_{i=r+1}^{n}tright) }_{=t^{n-r}}=left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}.
end{align*}
Now, Corollary 2 yields
begin{align*}
& left( text{the sum of all principal }rtimes rtext{-minors of
}Aright) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial
}underbrace{detleft( tI_n +Aright) }_{=left( prod_{i=1}^{r}left(
t+lambda_{i}right) right) cdot t^{n-r}}right) \
& =left( text{the coefficient of }t^{n-r}text{ in the polynomial }left(
prod_{i=1}^{r}left( t+lambda_{i}right) right) cdot t^{n-r}right) \
& =left( text{the coefficient of }t^{0}text{ in the polynomial }
prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& qquadleft( text{by Lemma 4, applied to }m=0text{ and }k=n-rtext{ and
}p=prod_{i=1}^{r}left( t+lambda_{i}right) right) \
& =left( text{the constant term of the polynomial }prod_{i=1}^{r}left(
t+lambda_{i}right) right) \
& =prod_{i=1}^{r}lambda_{i}=lambda_{1}lambda_{2}cdotslambda_{r}\
& =left( text{the product of all nonzero eigenvalues of }Aright)
end{align*}
(since $lambda_{1},lambda_{2},ldots,lambda_{r}$ are exactly the nonzero
eigenvalues of $A$). This proves Theorem 5. $blacksquare$
Note that in the above proof of Theorem 5,
the diagonalizability of $A$ was used only to guarantee that $A$
has exactly $r$ nonzero eigenvalues and that all $n$ eigenvalues of $A$
belong to $mathbb{F}$.
answered Jan 10 at 19:09
darij grinbergdarij grinberg
10.5k33062
10.5k33062
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2718258%2fis-sum-of-principal-minors-equals-to-pseudo-determinant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is true. The sum of all principal minors of order $r$ is the sum of all $r$-wise products of the eigenvalues. Now, if only $r$ of the eigenvalues are nonzero, then the latter sum will be the product of these $r$ nonzero eigenvalues. Hence, so is the former sum.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:25
$begingroup$
@darijgrinberg what do you mean by sum of all r-wise products of the eigenvalues? The OP says just pseudo determinant equals the sum of all principal minors, and the definition of pseudo determinant is products of all eigenvalues
$endgroup$
– delinco
Apr 2 '18 at 3:55
$begingroup$
If $lambda_1, lambda_2, ldots, lambda_n$ are the eigenvalues of $A$, then the sum of all principal minors of order $r$ of $A$ is $sumlimits_{1 leq i_1 < i_2 < cdots < i_r leq n} lambda_{i_1} lambda_{i_2} cdots lambda_{i_r}$. This is the well-known fact that I'm referring to. Of course, if $A$ has only $r$ nonzero eigenvalues, then this sum will have only one nonzero addend.
$endgroup$
– darij grinberg
Apr 2 '18 at 3:56
$begingroup$
@darijgrinberg could you give me reference that I can follow the proof?
$endgroup$
– delinco
Apr 2 '18 at 3:57
1
$begingroup$
Exterior powers. For a really elementary self-contained proof, see Corollary 5.163 in my Notes on the combinatorial fundamentals of algebra, version of 21 March 2018 (for the solution, see Exercise 5.48). But the gist of the argument is explained well in math.stackexchange.com/questions/336048/coefficient-of-detxia/… .
$endgroup$
– darij grinberg
Apr 2 '18 at 4:42