Identities involving the Gaussian hypergeometric function












0












$begingroup$


By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
&&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
end{eqnarray}



In[334]:= x =.;
eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
4 - (12006225 x^3)/4) D[#, x]) & /@ {
Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
FullSimplify[eX1 - eX2]

Out[337]= {0}


Secondly we have:



begin{eqnarray}
frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
_2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
end{eqnarray}



In[352]:= x =.;
eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
eX2 = 1/4536;
N[eX1 - eX2, 100]

During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>

Out[355]= 0.*10^-152


The question is how would one go about proving either of those identities?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
    begin{eqnarray}
    &&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
    &&
    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
    end{eqnarray}



    In[334]:= x =.;
    eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
    8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
    x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
    eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
    4 - (12006225 x^3)/4) D[#, x]) & /@ {
    Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
    FullSimplify[eX1 - eX2]

    Out[337]= {0}


    Secondly we have:



    begin{eqnarray}
    frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
    _2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
    end{eqnarray}



    In[352]:= x =.;
    eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
    11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
    1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
    99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
    eX2 = 1/4536;
    N[eX1 - eX2, 100]

    During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>

    Out[355]= 0.*10^-152


    The question is how would one go about proving either of those identities?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
      begin{eqnarray}
      &&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
      &&
      !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
      end{eqnarray}



      In[334]:= x =.;
      eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
      8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
      x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
      eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
      4 - (12006225 x^3)/4) D[#, x]) & /@ {
      Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
      FullSimplify[eX1 - eX2]

      Out[337]= {0}


      Secondly we have:



      begin{eqnarray}
      frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
      _2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
      end{eqnarray}



      In[352]:= x =.;
      eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
      11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
      1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
      99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
      eX2 = 1/4536;
      N[eX1 - eX2, 100]

      During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>

      Out[355]= 0.*10^-152


      The question is how would one go about proving either of those identities?










      share|cite|improve this question









      $endgroup$




      By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
      begin{eqnarray}
      &&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
      &&
      !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
      end{eqnarray}



      In[334]:= x =.;
      eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
      8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
      x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
      eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
      4 - (12006225 x^3)/4) D[#, x]) & /@ {
      Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
      FullSimplify[eX1 - eX2]

      Out[337]= {0}


      Secondly we have:



      begin{eqnarray}
      frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
      _2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
      end{eqnarray}



      In[352]:= x =.;
      eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
      11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
      1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
      99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
      eX2 = 1/4536;
      N[eX1 - eX2, 100]

      During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>

      Out[355]= 0.*10^-152


      The question is how would one go about proving either of those identities?







      special-functions hypergeometric-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 10 at 13:03









      PrzemoPrzemo

      4,1951928




      4,1951928






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068622%2fidentities-involving-the-gaussian-hypergeometric-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068622%2fidentities-involving-the-gaussian-hypergeometric-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?