Identities involving the Gaussian hypergeometric function
$begingroup$
By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
&&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
end{eqnarray}
In[334]:= x =.;
eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
4 - (12006225 x^3)/4) D[#, x]) & /@ {
Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
FullSimplify[eX1 - eX2]
Out[337]= {0}
Secondly we have:
begin{eqnarray}
frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
_2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
end{eqnarray}
In[352]:= x =.;
eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
eX2 = 1/4536;
N[eX1 - eX2, 100]
During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>
Out[355]= 0.*10^-152
The question is how would one go about proving either of those identities?
special-functions hypergeometric-function
$endgroup$
add a comment |
$begingroup$
By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
&&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
end{eqnarray}
In[334]:= x =.;
eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
4 - (12006225 x^3)/4) D[#, x]) & /@ {
Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
FullSimplify[eX1 - eX2]
Out[337]= {0}
Secondly we have:
begin{eqnarray}
frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
_2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
end{eqnarray}
In[352]:= x =.;
eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
eX2 = 1/4536;
N[eX1 - eX2, 100]
During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>
Out[355]= 0.*10^-152
The question is how would one go about proving either of those identities?
special-functions hypergeometric-function
$endgroup$
add a comment |
$begingroup$
By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
&&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
end{eqnarray}
In[334]:= x =.;
eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
4 - (12006225 x^3)/4) D[#, x]) & /@ {
Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
FullSimplify[eX1 - eX2]
Out[337]= {0}
Secondly we have:
begin{eqnarray}
frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
_2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
end{eqnarray}
In[352]:= x =.;
eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
eX2 = 1/4536;
N[eX1 - eX2, 100]
During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>
Out[355]= 0.*10^-152
The question is how would one go about proving either of those identities?
special-functions hypergeometric-function
$endgroup$
By applying the algorithm from Solving linear ordinary, 2nd order differential equations via global integral bases. to the five parameter family of ODEs defined in my first answer to Gauge transformation of differential equations I I have stumbled on two identities. Firstly we have:
begin{eqnarray}
&&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-311850 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(-frac{1091475 x^3}{2}+frac{4002075 x^2}{8}+frac{1440747 x}{8}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{4}{3};9 x^2right)=\
&&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!left[left(-1715175 x^2+frac{1334025 x}{4}+frac{480249}{4}right)+left(frac{1334025 x}{4}-frac{12006225 x^3}{4}right) frac{d}{d x}right], _2F_1left(frac{3}{11},frac{2}{7};frac{1}{3};9 x^2right)
end{eqnarray}
In[334]:= x =.;
eX1 = ( (480249/4 + (1334025 x)/4 - 311850 x^2) # + ((1440747 x)/
8 + (4002075 x^2)/8 - (1091475 x^3)/2) D[#,
x]) & /@ {Hypergeometric2F1[3/11, 2/7, 4/3, 9 x^2]};
eX2 = ((480249/4 + (1334025 x)/4 - 1715175 x^2) # + ((1334025 x)/
4 - (12006225 x^3)/4) D[#, x]) & /@ {
Hypergeometric2F1[3/11, 2/7, 1/3, 9 x^2]};
FullSimplify[eX1 - eX2]
Out[337]= {0}
Secondly we have:
begin{eqnarray}
frac{12168 , _2F_1left(-frac{2}{33},-frac{1}{21};frac{2}{3};frac{1}{9}right)-11893 , _2F_1left(-frac{1}{21},frac{31}{33};frac{2}{3};frac{1}{9}right)}{1490148 ,
_2F_1left(frac{31}{33},frac{20}{21};frac{5}{3};frac{1}{9}right)+99200 , _2F_1left(frac{64}{33},frac{41}{21};frac{8}{3};frac{1}{9}right)} = frac{1}{4536}
end{eqnarray}
In[352]:= x =.;
eX1 = (12168 Hypergeometric2F1[-(2/33), -(1/21), 2/3, 1/9] -
11893 Hypergeometric2F1[-(1/21), 31/33, 2/3, 1/9])/(
1490148 Hypergeometric2F1[31/33, 20/21, 5/3, 1/9] +
99200 Hypergeometric2F1[64/33, 41/21, 8/3, 1/9]);
eX2 = 1/4536;
N[eX1 - eX2, 100]
During evaluation of In[352]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -(1/4536)+(12168 Hypergeometric2F1[-(2/33),-(1/21),2/3,1/9]-11893 Hypergeometric2F1[-(1/21),31/33,2/3,1/9])/(1490148 Hypergeometric2F1[31/33,20/21,5/3,1/9]+99200 Hypergeometric2F1[64/33,41/21,8/3,1/9]). >>
Out[355]= 0.*10^-152
The question is how would one go about proving either of those identities?
special-functions hypergeometric-function
special-functions hypergeometric-function
asked Jan 10 at 13:03
PrzemoPrzemo
4,1951928
4,1951928
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068622%2fidentities-involving-the-gaussian-hypergeometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068622%2fidentities-involving-the-gaussian-hypergeometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown