Circles within ellipses












0














What is the largest circle centered at $(x_0, y_0)$ that is totally enveloped by an ellipse with a major axis $A$ and minor axis $B$? In this problem, assume a constraint s.t. the major axis is in the $x$ direction. Alternate cases of the problem would be solved by a rotation of the major axis to the $x$ axis as a first step. Additionally, assume $(x_0, y_0)$ is within the ellipse. The ellipse is centered at $(0,0)$.



I think that the closed form solution is not guaranteed if neither $x_0$ nor $y_0$ are zero. I know a closed form solution can be found if either $x_0$ or $y_0$ is equal to zero.



Thank you for your time










share|cite|improve this question
























  • In other words, you want the minimum distance from any point on the ellipse to $(x_0,y_0).$ Finding the minimum (or maximum) distance is also involved in math.stackexchange.com/questions/2641562/… and math.stackexchange.com/questions/1846062/…
    – David K
    14 hours ago










  • Where is the center of the ellipse?
    – Jens
    12 hours ago
















0














What is the largest circle centered at $(x_0, y_0)$ that is totally enveloped by an ellipse with a major axis $A$ and minor axis $B$? In this problem, assume a constraint s.t. the major axis is in the $x$ direction. Alternate cases of the problem would be solved by a rotation of the major axis to the $x$ axis as a first step. Additionally, assume $(x_0, y_0)$ is within the ellipse. The ellipse is centered at $(0,0)$.



I think that the closed form solution is not guaranteed if neither $x_0$ nor $y_0$ are zero. I know a closed form solution can be found if either $x_0$ or $y_0$ is equal to zero.



Thank you for your time










share|cite|improve this question
























  • In other words, you want the minimum distance from any point on the ellipse to $(x_0,y_0).$ Finding the minimum (or maximum) distance is also involved in math.stackexchange.com/questions/2641562/… and math.stackexchange.com/questions/1846062/…
    – David K
    14 hours ago










  • Where is the center of the ellipse?
    – Jens
    12 hours ago














0












0








0


1





What is the largest circle centered at $(x_0, y_0)$ that is totally enveloped by an ellipse with a major axis $A$ and minor axis $B$? In this problem, assume a constraint s.t. the major axis is in the $x$ direction. Alternate cases of the problem would be solved by a rotation of the major axis to the $x$ axis as a first step. Additionally, assume $(x_0, y_0)$ is within the ellipse. The ellipse is centered at $(0,0)$.



I think that the closed form solution is not guaranteed if neither $x_0$ nor $y_0$ are zero. I know a closed form solution can be found if either $x_0$ or $y_0$ is equal to zero.



Thank you for your time










share|cite|improve this question















What is the largest circle centered at $(x_0, y_0)$ that is totally enveloped by an ellipse with a major axis $A$ and minor axis $B$? In this problem, assume a constraint s.t. the major axis is in the $x$ direction. Alternate cases of the problem would be solved by a rotation of the major axis to the $x$ axis as a first step. Additionally, assume $(x_0, y_0)$ is within the ellipse. The ellipse is centered at $(0,0)$.



I think that the closed form solution is not guaranteed if neither $x_0$ nor $y_0$ are zero. I know a closed form solution can be found if either $x_0$ or $y_0$ is equal to zero.



Thank you for your time







calculus geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 10 hours ago

























asked 16 hours ago









szatkosa

564




564












  • In other words, you want the minimum distance from any point on the ellipse to $(x_0,y_0).$ Finding the minimum (or maximum) distance is also involved in math.stackexchange.com/questions/2641562/… and math.stackexchange.com/questions/1846062/…
    – David K
    14 hours ago










  • Where is the center of the ellipse?
    – Jens
    12 hours ago


















  • In other words, you want the minimum distance from any point on the ellipse to $(x_0,y_0).$ Finding the minimum (or maximum) distance is also involved in math.stackexchange.com/questions/2641562/… and math.stackexchange.com/questions/1846062/…
    – David K
    14 hours ago










  • Where is the center of the ellipse?
    – Jens
    12 hours ago
















In other words, you want the minimum distance from any point on the ellipse to $(x_0,y_0).$ Finding the minimum (or maximum) distance is also involved in math.stackexchange.com/questions/2641562/… and math.stackexchange.com/questions/1846062/…
– David K
14 hours ago




In other words, you want the minimum distance from any point on the ellipse to $(x_0,y_0).$ Finding the minimum (or maximum) distance is also involved in math.stackexchange.com/questions/2641562/… and math.stackexchange.com/questions/1846062/…
– David K
14 hours ago












Where is the center of the ellipse?
– Jens
12 hours ago




Where is the center of the ellipse?
– Jens
12 hours ago










1 Answer
1






active

oldest

votes


















1














Assuming the ellipse center is at $(0,0)$, here are some steps that can be followed to come up with the solution:




  1. Find the line normal to the ellipse passing through a generic point on the ellipse $(x_1, y_1)$.


The ellipse is $frac{x^2}{A^2} + frac{y^2}{B^2}=1$ (I). Taking derivatives: $frac{2x}{A^2} + frac{2 y y'}{B^2} = 0 Rightarrow y'= - frac{B^2 x}{A^2 y}$, which is the slope of the tangent line. The normal line is perpendicular to the tangent line, so its slope is $m_n=frac{A^2 y}{B^2x}$. The normal line passing through $(x_1, y_1)$ is then: $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$




  1. Impose that the normal line goes through the given point $(x_0, y_0)$ and that the point $(x_1, y_1)$ satisfies the equation of the ellipse. That is two equations and two unknowns; get $(x_1, y_1)$ as a function of $(x_0, y_0)$. In general, there will be two solutions.


The point $(x_0, y_0)$ should satisfy $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$, then: $y_0-y_1 = frac{A^2 y_1}{B^2x_1} (x_0-x_1)$ (II)



Solving the system of equations (I), (II) yields at most two solutions for $(x_1,y_1)$, say $(x_{11},y_{11})$ and $(x_{12},y_{12})$.




  1. The radius of the desired circle is the smallest of the distances between $(x_0, y_0)$ and, respectively, $(x_{11},y_{11})$ and $(x_{12},y_{12})$ (call it $d$).


$d=min_{i in{1,2}} sqrt{(x_{1i}-x_0)^2 + (y_{1i}-y_0)^2} $, then the equation of the desired circumference (around the desired circle) is $(x-x_0)^2 + (y-y_0)^2 = d^2$.






share|cite|improve this answer










New contributor




pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • Sure, thank you!, corrected
    – pendermath
    8 hours ago










  • The relevant normal might be vertical ($x_0=0$), so it’s generally better to work with a different form of equation from slope-intercept.
    – amd
    8 hours ago










  • Indeed, although in those cases finding the circle should be fairly easy. I implicitly assumed that $(x_0,y_0)$ is not in the axes of the ellipse. Thanks again!
    – pendermath
    8 hours ago










  • You are right, again! I will update the solution accordingly Thx
    – pendermath
    7 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061568%2fcircles-within-ellipses%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1














Assuming the ellipse center is at $(0,0)$, here are some steps that can be followed to come up with the solution:




  1. Find the line normal to the ellipse passing through a generic point on the ellipse $(x_1, y_1)$.


The ellipse is $frac{x^2}{A^2} + frac{y^2}{B^2}=1$ (I). Taking derivatives: $frac{2x}{A^2} + frac{2 y y'}{B^2} = 0 Rightarrow y'= - frac{B^2 x}{A^2 y}$, which is the slope of the tangent line. The normal line is perpendicular to the tangent line, so its slope is $m_n=frac{A^2 y}{B^2x}$. The normal line passing through $(x_1, y_1)$ is then: $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$




  1. Impose that the normal line goes through the given point $(x_0, y_0)$ and that the point $(x_1, y_1)$ satisfies the equation of the ellipse. That is two equations and two unknowns; get $(x_1, y_1)$ as a function of $(x_0, y_0)$. In general, there will be two solutions.


The point $(x_0, y_0)$ should satisfy $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$, then: $y_0-y_1 = frac{A^2 y_1}{B^2x_1} (x_0-x_1)$ (II)



Solving the system of equations (I), (II) yields at most two solutions for $(x_1,y_1)$, say $(x_{11},y_{11})$ and $(x_{12},y_{12})$.




  1. The radius of the desired circle is the smallest of the distances between $(x_0, y_0)$ and, respectively, $(x_{11},y_{11})$ and $(x_{12},y_{12})$ (call it $d$).


$d=min_{i in{1,2}} sqrt{(x_{1i}-x_0)^2 + (y_{1i}-y_0)^2} $, then the equation of the desired circumference (around the desired circle) is $(x-x_0)^2 + (y-y_0)^2 = d^2$.






share|cite|improve this answer










New contributor




pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • Sure, thank you!, corrected
    – pendermath
    8 hours ago










  • The relevant normal might be vertical ($x_0=0$), so it’s generally better to work with a different form of equation from slope-intercept.
    – amd
    8 hours ago










  • Indeed, although in those cases finding the circle should be fairly easy. I implicitly assumed that $(x_0,y_0)$ is not in the axes of the ellipse. Thanks again!
    – pendermath
    8 hours ago










  • You are right, again! I will update the solution accordingly Thx
    – pendermath
    7 hours ago
















1














Assuming the ellipse center is at $(0,0)$, here are some steps that can be followed to come up with the solution:




  1. Find the line normal to the ellipse passing through a generic point on the ellipse $(x_1, y_1)$.


The ellipse is $frac{x^2}{A^2} + frac{y^2}{B^2}=1$ (I). Taking derivatives: $frac{2x}{A^2} + frac{2 y y'}{B^2} = 0 Rightarrow y'= - frac{B^2 x}{A^2 y}$, which is the slope of the tangent line. The normal line is perpendicular to the tangent line, so its slope is $m_n=frac{A^2 y}{B^2x}$. The normal line passing through $(x_1, y_1)$ is then: $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$




  1. Impose that the normal line goes through the given point $(x_0, y_0)$ and that the point $(x_1, y_1)$ satisfies the equation of the ellipse. That is two equations and two unknowns; get $(x_1, y_1)$ as a function of $(x_0, y_0)$. In general, there will be two solutions.


The point $(x_0, y_0)$ should satisfy $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$, then: $y_0-y_1 = frac{A^2 y_1}{B^2x_1} (x_0-x_1)$ (II)



Solving the system of equations (I), (II) yields at most two solutions for $(x_1,y_1)$, say $(x_{11},y_{11})$ and $(x_{12},y_{12})$.




  1. The radius of the desired circle is the smallest of the distances between $(x_0, y_0)$ and, respectively, $(x_{11},y_{11})$ and $(x_{12},y_{12})$ (call it $d$).


$d=min_{i in{1,2}} sqrt{(x_{1i}-x_0)^2 + (y_{1i}-y_0)^2} $, then the equation of the desired circumference (around the desired circle) is $(x-x_0)^2 + (y-y_0)^2 = d^2$.






share|cite|improve this answer










New contributor




pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • Sure, thank you!, corrected
    – pendermath
    8 hours ago










  • The relevant normal might be vertical ($x_0=0$), so it’s generally better to work with a different form of equation from slope-intercept.
    – amd
    8 hours ago










  • Indeed, although in those cases finding the circle should be fairly easy. I implicitly assumed that $(x_0,y_0)$ is not in the axes of the ellipse. Thanks again!
    – pendermath
    8 hours ago










  • You are right, again! I will update the solution accordingly Thx
    – pendermath
    7 hours ago














1












1








1






Assuming the ellipse center is at $(0,0)$, here are some steps that can be followed to come up with the solution:




  1. Find the line normal to the ellipse passing through a generic point on the ellipse $(x_1, y_1)$.


The ellipse is $frac{x^2}{A^2} + frac{y^2}{B^2}=1$ (I). Taking derivatives: $frac{2x}{A^2} + frac{2 y y'}{B^2} = 0 Rightarrow y'= - frac{B^2 x}{A^2 y}$, which is the slope of the tangent line. The normal line is perpendicular to the tangent line, so its slope is $m_n=frac{A^2 y}{B^2x}$. The normal line passing through $(x_1, y_1)$ is then: $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$




  1. Impose that the normal line goes through the given point $(x_0, y_0)$ and that the point $(x_1, y_1)$ satisfies the equation of the ellipse. That is two equations and two unknowns; get $(x_1, y_1)$ as a function of $(x_0, y_0)$. In general, there will be two solutions.


The point $(x_0, y_0)$ should satisfy $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$, then: $y_0-y_1 = frac{A^2 y_1}{B^2x_1} (x_0-x_1)$ (II)



Solving the system of equations (I), (II) yields at most two solutions for $(x_1,y_1)$, say $(x_{11},y_{11})$ and $(x_{12},y_{12})$.




  1. The radius of the desired circle is the smallest of the distances between $(x_0, y_0)$ and, respectively, $(x_{11},y_{11})$ and $(x_{12},y_{12})$ (call it $d$).


$d=min_{i in{1,2}} sqrt{(x_{1i}-x_0)^2 + (y_{1i}-y_0)^2} $, then the equation of the desired circumference (around the desired circle) is $(x-x_0)^2 + (y-y_0)^2 = d^2$.






share|cite|improve this answer










New contributor




pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









Assuming the ellipse center is at $(0,0)$, here are some steps that can be followed to come up with the solution:




  1. Find the line normal to the ellipse passing through a generic point on the ellipse $(x_1, y_1)$.


The ellipse is $frac{x^2}{A^2} + frac{y^2}{B^2}=1$ (I). Taking derivatives: $frac{2x}{A^2} + frac{2 y y'}{B^2} = 0 Rightarrow y'= - frac{B^2 x}{A^2 y}$, which is the slope of the tangent line. The normal line is perpendicular to the tangent line, so its slope is $m_n=frac{A^2 y}{B^2x}$. The normal line passing through $(x_1, y_1)$ is then: $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$




  1. Impose that the normal line goes through the given point $(x_0, y_0)$ and that the point $(x_1, y_1)$ satisfies the equation of the ellipse. That is two equations and two unknowns; get $(x_1, y_1)$ as a function of $(x_0, y_0)$. In general, there will be two solutions.


The point $(x_0, y_0)$ should satisfy $y-y_1 = frac{A^2 y_1}{B^2x_1} (x-x_1)$, then: $y_0-y_1 = frac{A^2 y_1}{B^2x_1} (x_0-x_1)$ (II)



Solving the system of equations (I), (II) yields at most two solutions for $(x_1,y_1)$, say $(x_{11},y_{11})$ and $(x_{12},y_{12})$.




  1. The radius of the desired circle is the smallest of the distances between $(x_0, y_0)$ and, respectively, $(x_{11},y_{11})$ and $(x_{12},y_{12})$ (call it $d$).


$d=min_{i in{1,2}} sqrt{(x_{1i}-x_0)^2 + (y_{1i}-y_0)^2} $, then the equation of the desired circumference (around the desired circle) is $(x-x_0)^2 + (y-y_0)^2 = d^2$.







share|cite|improve this answer










New contributor




pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer








edited 7 hours ago





















New contributor




pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 10 hours ago









pendermath

743




743




New contributor




pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • Sure, thank you!, corrected
    – pendermath
    8 hours ago










  • The relevant normal might be vertical ($x_0=0$), so it’s generally better to work with a different form of equation from slope-intercept.
    – amd
    8 hours ago










  • Indeed, although in those cases finding the circle should be fairly easy. I implicitly assumed that $(x_0,y_0)$ is not in the axes of the ellipse. Thanks again!
    – pendermath
    8 hours ago










  • You are right, again! I will update the solution accordingly Thx
    – pendermath
    7 hours ago


















  • Sure, thank you!, corrected
    – pendermath
    8 hours ago










  • The relevant normal might be vertical ($x_0=0$), so it’s generally better to work with a different form of equation from slope-intercept.
    – amd
    8 hours ago










  • Indeed, although in those cases finding the circle should be fairly easy. I implicitly assumed that $(x_0,y_0)$ is not in the axes of the ellipse. Thanks again!
    – pendermath
    8 hours ago










  • You are right, again! I will update the solution accordingly Thx
    – pendermath
    7 hours ago
















Sure, thank you!, corrected
– pendermath
8 hours ago




Sure, thank you!, corrected
– pendermath
8 hours ago












The relevant normal might be vertical ($x_0=0$), so it’s generally better to work with a different form of equation from slope-intercept.
– amd
8 hours ago




The relevant normal might be vertical ($x_0=0$), so it’s generally better to work with a different form of equation from slope-intercept.
– amd
8 hours ago












Indeed, although in those cases finding the circle should be fairly easy. I implicitly assumed that $(x_0,y_0)$ is not in the axes of the ellipse. Thanks again!
– pendermath
8 hours ago




Indeed, although in those cases finding the circle should be fairly easy. I implicitly assumed that $(x_0,y_0)$ is not in the axes of the ellipse. Thanks again!
– pendermath
8 hours ago












You are right, again! I will update the solution accordingly Thx
– pendermath
7 hours ago




You are right, again! I will update the solution accordingly Thx
– pendermath
7 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061568%2fcircles-within-ellipses%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?