Exercise XV num 12 - Calculus Made Easy












1














A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



Find its dimensions in order that the least amount of iron sheet may be used in its construction.



My approach:



Lets say all dimensions are each $ > 0$;



Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



$frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



$frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



Is this the right path to continue? Looks too messy in my eyes.










share|cite|improve this question









New contributor




LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    1














    A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



    Find its dimensions in order that the least amount of iron sheet may be used in its construction.



    My approach:



    Lets say all dimensions are each $ > 0$;



    Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



    Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



    $frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



    $frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



    Is this the right path to continue? Looks too messy in my eyes.










    share|cite|improve this question









    New contributor




    LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      1












      1








      1







      A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



      Find its dimensions in order that the least amount of iron sheet may be used in its construction.



      My approach:



      Lets say all dimensions are each $ > 0$;



      Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



      Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



      $frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      $frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      Is this the right path to continue? Looks too messy in my eyes.










      share|cite|improve this question









      New contributor




      LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



      Find its dimensions in order that the least amount of iron sheet may be used in its construction.



      My approach:



      Lets say all dimensions are each $ > 0$;



      Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



      Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



      $frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      $frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      Is this the right path to continue? Looks too messy in my eyes.







      calculus optimization partial-derivative






      share|cite|improve this question









      New contributor




      LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago







      LeoBonhart













      New contributor




      LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 days ago









      LeoBonhartLeoBonhart

      134




      134




      New contributor




      LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      LeoBonhart is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          0














          It is not so messy. Use $w=lambda h$ to get
          $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
          $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
          Subtract one from the other to get
          $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            LeoBonhart is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062783%2fexercise-xv-num-12-calculus-made-easy%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            It is not so messy. Use $w=lambda h$ to get
            $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
            $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
            Subtract one from the other to get
            $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






            share|cite|improve this answer


























              0














              It is not so messy. Use $w=lambda h$ to get
              $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
              $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
              Subtract one from the other to get
              $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






              share|cite|improve this answer
























                0












                0








                0






                It is not so messy. Use $w=lambda h$ to get
                $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
                $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
                Subtract one from the other to get
                $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






                share|cite|improve this answer












                It is not so messy. Use $w=lambda h$ to get
                $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
                $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
                Subtract one from the other to get
                $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                Claude LeiboviciClaude Leibovici

                119k1157132




                119k1157132






















                    LeoBonhart is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    LeoBonhart is a new contributor. Be nice, and check out our Code of Conduct.













                    LeoBonhart is a new contributor. Be nice, and check out our Code of Conduct.












                    LeoBonhart is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062783%2fexercise-xv-num-12-calculus-made-easy%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?