Coefficients of Fourier series
i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :
$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$
From Euler formulas:
$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$
$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $
Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).
But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.
On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much
fourier-series signal-processing
add a comment |
i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :
$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$
From Euler formulas:
$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$
$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $
Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).
But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.
On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much
fourier-series signal-processing
You know that $T=2pi$, yes?
– uniquesolution
2 days ago
add a comment |
i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :
$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$
From Euler formulas:
$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$
$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $
Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).
But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.
On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much
fourier-series signal-processing
i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :
$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$
From Euler formulas:
$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$
$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $
Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).
But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.
On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much
fourier-series signal-processing
fourier-series signal-processing
asked 2 days ago
Elena MartiniElena Martini
1
1
You know that $T=2pi$, yes?
– uniquesolution
2 days ago
add a comment |
You know that $T=2pi$, yes?
– uniquesolution
2 days ago
You know that $T=2pi$, yes?
– uniquesolution
2 days ago
You know that $T=2pi$, yes?
– uniquesolution
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
The problem start in you very first expression
$$
c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
$$
and now do the same trick you did
begin{eqnarray}
c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
end{eqnarray}
Now consider three cases
$k = 1$
$$
c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
$$
$k = -1$
Same idea
$$
c_{-1} = frac{1}{2}
$$
$k not= 1$ and $k not= -1$
$$
c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
$$
add a comment |
First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:
$$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$
Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$
Distribute the $e^{-2ipi kf_0t}$:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$
For simplicity, take the $frac 1 2$ out of the integral:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$
Integrate:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$
Substitute $f_0T_0=1$ and $e^0=1$:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$
Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:
$$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$
Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.
First, let's do $k=1$. From a previous equation, we have:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$
Simplify and substitute $e^0=1$:
$$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$
Integrate:
$$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$
Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
$$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$
I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062765%2fcoefficients-of-fourier-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The problem start in you very first expression
$$
c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
$$
and now do the same trick you did
begin{eqnarray}
c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
end{eqnarray}
Now consider three cases
$k = 1$
$$
c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
$$
$k = -1$
Same idea
$$
c_{-1} = frac{1}{2}
$$
$k not= 1$ and $k not= -1$
$$
c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
$$
add a comment |
The problem start in you very first expression
$$
c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
$$
and now do the same trick you did
begin{eqnarray}
c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
end{eqnarray}
Now consider three cases
$k = 1$
$$
c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
$$
$k = -1$
Same idea
$$
c_{-1} = frac{1}{2}
$$
$k not= 1$ and $k not= -1$
$$
c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
$$
add a comment |
The problem start in you very first expression
$$
c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
$$
and now do the same trick you did
begin{eqnarray}
c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
end{eqnarray}
Now consider three cases
$k = 1$
$$
c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
$$
$k = -1$
Same idea
$$
c_{-1} = frac{1}{2}
$$
$k not= 1$ and $k not= -1$
$$
c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
$$
The problem start in you very first expression
$$
c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
$$
and now do the same trick you did
begin{eqnarray}
c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
end{eqnarray}
Now consider three cases
$k = 1$
$$
c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
$$
$k = -1$
Same idea
$$
c_{-1} = frac{1}{2}
$$
$k not= 1$ and $k not= -1$
$$
c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
$$
answered 2 days ago
caveraccaverac
13.9k21130
13.9k21130
add a comment |
add a comment |
First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:
$$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$
Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$
Distribute the $e^{-2ipi kf_0t}$:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$
For simplicity, take the $frac 1 2$ out of the integral:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$
Integrate:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$
Substitute $f_0T_0=1$ and $e^0=1$:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$
Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:
$$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$
Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.
First, let's do $k=1$. From a previous equation, we have:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$
Simplify and substitute $e^0=1$:
$$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$
Integrate:
$$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$
Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
$$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$
I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.
add a comment |
First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:
$$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$
Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$
Distribute the $e^{-2ipi kf_0t}$:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$
For simplicity, take the $frac 1 2$ out of the integral:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$
Integrate:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$
Substitute $f_0T_0=1$ and $e^0=1$:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$
Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:
$$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$
Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.
First, let's do $k=1$. From a previous equation, we have:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$
Simplify and substitute $e^0=1$:
$$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$
Integrate:
$$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$
Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
$$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$
I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.
add a comment |
First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:
$$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$
Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$
Distribute the $e^{-2ipi kf_0t}$:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$
For simplicity, take the $frac 1 2$ out of the integral:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$
Integrate:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$
Substitute $f_0T_0=1$ and $e^0=1$:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$
Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:
$$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$
Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.
First, let's do $k=1$. From a previous equation, we have:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$
Simplify and substitute $e^0=1$:
$$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$
Integrate:
$$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$
Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
$$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$
I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.
First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:
$$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$
Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$
Distribute the $e^{-2ipi kf_0t}$:
$$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$
For simplicity, take the $frac 1 2$ out of the integral:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$
Integrate:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$
Substitute $f_0T_0=1$ and $e^0=1$:
$$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$
Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:
$$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$
Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.
First, let's do $k=1$. From a previous equation, we have:
$$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$
Simplify and substitute $e^0=1$:
$$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$
Integrate:
$$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$
Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
$$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$
I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.
answered 2 days ago
Noble MushtakNoble Mushtak
15.2k1735
15.2k1735
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062765%2fcoefficients-of-fourier-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You know that $T=2pi$, yes?
– uniquesolution
2 days ago