Coefficients of Fourier series












0














i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :



$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$



From Euler formulas:



$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$



$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $



Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).



But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.



On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much










share|cite|improve this question






















  • You know that $T=2pi$, yes?
    – uniquesolution
    2 days ago
















0














i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :



$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$



From Euler formulas:



$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$



$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $



Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).



But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.



On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much










share|cite|improve this question






















  • You know that $T=2pi$, yes?
    – uniquesolution
    2 days ago














0












0








0







i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :



$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$



From Euler formulas:



$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$



$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $



Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).



But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.



On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much










share|cite|improve this question













i’d like to calculate Fourier coefficients of $cos 2 pi f_0 t$.
This is what I did :



$$ c_k = frac{1}{T_0}int_{0}^{T} cos 2 pi f_0 t cdot e^{-2ipi f_0 t}. $$



From Euler formulas:



$$ frac{1}{T_0}int_{0}^{T} frac{ e^{2ipi f_0 t} + e^{-2ipi f_0 t} }{2} cdot e^{-2ipi f_0 t}. $$



$ frac{1}{2T_0}int_{0}^{T} 1 + e^{-2pi f_0 t(1+i) } $



Solving i obtained $c_k = frac{1}{2T_0}[T_0 + frac{e^{-2pi (1+i)} - 1 }{-2pi f_0 - 2 i pi f_0 }] $ (because $f_0 = 1/T_0 $).



But $e^{-2ipi}e^{-2pi} = e^{-2pi}[cos2pi + i sin(-2pi)]= e^{-2pi}$.
So $frac{1}{2T_0}[ T_0 + frac{e^{-2pi } - 1 }{-2pi f_0}(1+i)]$.



On my book the result is $1/2$ If $k = pm 1$ And $0$ If $k$ Is different from $1$. Can someone can tell me where is the error ? I’d really like to learn how to correct this exercise . Thank you so much







fourier-series signal-processing






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 days ago









Elena MartiniElena Martini

1




1












  • You know that $T=2pi$, yes?
    – uniquesolution
    2 days ago


















  • You know that $T=2pi$, yes?
    – uniquesolution
    2 days ago
















You know that $T=2pi$, yes?
– uniquesolution
2 days ago




You know that $T=2pi$, yes?
– uniquesolution
2 days ago










2 Answers
2






active

oldest

votes


















0














The problem start in you very first expression



$$
c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
$$



and now do the same trick you did



begin{eqnarray}
c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
end{eqnarray}



Now consider three cases




$k = 1$




$$
c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
$$




$k = -1$




Same idea



$$
c_{-1} = frac{1}{2}
$$




$k not= 1$ and $k not= -1$




$$
c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
$$






share|cite|improve this answer





























    0














    First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:



    $$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$



    Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:



    $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$



    Distribute the $e^{-2ipi kf_0t}$:



    $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$



    For simplicity, take the $frac 1 2$ out of the integral:
    $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$



    Integrate:
    $$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$



    Substitute $f_0T_0=1$ and $e^0=1$:



    $$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$



    Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:



    $$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$



    Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.



    First, let's do $k=1$. From a previous equation, we have:



    $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$



    Simplify and substitute $e^0=1$:



    $$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$



    Integrate:
    $$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$



    Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
    $$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$



    I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062765%2fcoefficients-of-fourier-series%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0














      The problem start in you very first expression



      $$
      c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
      $$



      and now do the same trick you did



      begin{eqnarray}
      c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
      end{eqnarray}



      Now consider three cases




      $k = 1$




      $$
      c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
      $$




      $k = -1$




      Same idea



      $$
      c_{-1} = frac{1}{2}
      $$




      $k not= 1$ and $k not= -1$




      $$
      c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
      $$






      share|cite|improve this answer


























        0














        The problem start in you very first expression



        $$
        c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
        $$



        and now do the same trick you did



        begin{eqnarray}
        c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
        end{eqnarray}



        Now consider three cases




        $k = 1$




        $$
        c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
        $$




        $k = -1$




        Same idea



        $$
        c_{-1} = frac{1}{2}
        $$




        $k not= 1$ and $k not= -1$




        $$
        c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
        $$






        share|cite|improve this answer
























          0












          0








          0






          The problem start in you very first expression



          $$
          c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
          $$



          and now do the same trick you did



          begin{eqnarray}
          c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
          end{eqnarray}



          Now consider three cases




          $k = 1$




          $$
          c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
          $$




          $k = -1$




          Same idea



          $$
          c_{-1} = frac{1}{2}
          $$




          $k not= 1$ and $k not= -1$




          $$
          c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
          $$






          share|cite|improve this answer












          The problem start in you very first expression



          $$
          c_k = frac{1}{T}int_0^T cos 2pi f_0 t cdot e^{-2pi i color{red}{k}t / T}~{rm d}t
          $$



          and now do the same trick you did



          begin{eqnarray}
          c_k &=& f_0int_0^{1/f_0} frac{e^{2pi i f_0 t} + e^{-2pi i f_0 t}}{2} e^{-2pi i f_0 color{red}{k}t} ~{rm d}t = frac{f_0}{2} int_0^{1/f_0}left[ e^{2pi i f_0(1 - k)t} + e^{-2pi i f_0(1 + k)t}right]{rm d}t
          end{eqnarray}



          Now consider three cases




          $k = 1$




          $$
          c_1 = frac{f_0}{2} int_0^{1/f_0}left[1 + e^{-4pi i f_0t}right]{rm d}t = frac{1}{2}
          $$




          $k = -1$




          Same idea



          $$
          c_{-1} = frac{1}{2}
          $$




          $k not= 1$ and $k not= -1$




          $$
          c_k = frac{f_0}{2} left[frac{e^{2pi i f_0(1 - k)t}}{2pi i f_0 (1 - k)} - frac{-e^{2pi i f_0(1 + k)t}}{2pi i f_0 (1 + k)} right]_0^{1/f_0} = 0
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          caveraccaverac

          13.9k21130




          13.9k21130























              0














              First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:



              $$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$



              Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:



              $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$



              Distribute the $e^{-2ipi kf_0t}$:



              $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$



              For simplicity, take the $frac 1 2$ out of the integral:
              $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$



              Integrate:
              $$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$



              Substitute $f_0T_0=1$ and $e^0=1$:



              $$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$



              Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:



              $$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$



              Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.



              First, let's do $k=1$. From a previous equation, we have:



              $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$



              Simplify and substitute $e^0=1$:



              $$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$



              Integrate:
              $$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$



              Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
              $$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$



              I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.






              share|cite|improve this answer


























                0














                First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:



                $$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$



                Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:



                $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$



                Distribute the $e^{-2ipi kf_0t}$:



                $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$



                For simplicity, take the $frac 1 2$ out of the integral:
                $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$



                Integrate:
                $$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$



                Substitute $f_0T_0=1$ and $e^0=1$:



                $$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$



                Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:



                $$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$



                Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.



                First, let's do $k=1$. From a previous equation, we have:



                $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$



                Simplify and substitute $e^0=1$:



                $$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$



                Integrate:
                $$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$



                Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
                $$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$



                I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.






                share|cite|improve this answer
























                  0












                  0








                  0






                  First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:



                  $$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$



                  Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:



                  $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$



                  Distribute the $e^{-2ipi kf_0t}$:



                  $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$



                  For simplicity, take the $frac 1 2$ out of the integral:
                  $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$



                  Integrate:
                  $$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$



                  Substitute $f_0T_0=1$ and $e^0=1$:



                  $$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$



                  Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:



                  $$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$



                  Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.



                  First, let's do $k=1$. From a previous equation, we have:



                  $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$



                  Simplify and substitute $e^0=1$:



                  $$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$



                  Integrate:
                  $$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$



                  Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
                  $$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$



                  I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.






                  share|cite|improve this answer












                  First off, you didn't set up the initial integral correctly. Assuming $T_0=frac{1}{f_0}$ is the period of $cos(2pi f_0t)$, it should be:



                  $$c_k=frac 1 {T_0}int_0^{T_0}cos(2pi f_0t)e^{-2ipi kf_0t}dt$$



                  Critically, notice how $k$ is now in the exponent of the complex exponential where as in your integral, $k$ is not present in the formula at all. Now, we can use Euler's formula:



                  $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0t}+e^{-2ipi f_0t}}{2}e^{-2ipi kf_0t}dt$$



                  Distribute the $e^{-2ipi kf_0t}$:



                  $$c_k=frac 1 {T_0}int_0^{T_0}frac{e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t}}{2}dt$$



                  For simplicity, take the $frac 1 2$ out of the integral:
                  $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dt$$



                  Integrate:
                  $$c_k=frac{1}{2T_0}left(frac{e^{2ipi f_0(1-k)T_0}-e^{2ipi f_0(1-k)0}}{2ipi f_0(1-k)}+frac{e^{-2ipi f_0(1+k)T_0}-e^{-2ipi f_0(1+k)0}}{-2ipi f_0(1+k)}right)$$



                  Substitute $f_0T_0=1$ and $e^0=1$:



                  $$c_k=frac{1}{2T_0}left(frac{e^{2ipi (1-k)}-1}{2ipi f_0(1-k)}+frac{e^{-2ipi (1+k)}-1}{-2ipi f_0(1+k)}right)$$



                  Now, since $k$ is an integer, $1-k$ and $-(1+k)$ are also both integers, so $e^{2ipi (1-k)}=e^{-2ipi (1+k)}=1$:



                  $$c_k=frac{1}{2T_0}left(frac{1-1}{2ipi f_0(1-k)}+frac{1-1}{-2ipi f_0(1+k)}right)=0$$



                  Now, this seems like a very unintuitive answer, because it means $c_k=0$ for all $k$. However, if you look closely, you will see that we divided by $1-k$ and $1+k$ in our integration in order to get $c_k=0$. Clearly, this does not work for $k=1$ and $k=-1$ since it causes a division-by-zero error. Therefore, $c_k=0$ for all $kneq pm 1$ and we need to treat the cases $k=1$ and $k=-1$ separately.



                  First, let's do $k=1$. From a previous equation, we have:



                  $$c_k=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_0(1-k)t}+e^{-2ipi f_0(1+k)t})dtrightarrow c_1=frac 1 {2T_0}int_0^{T_0}(e^{2ipi f_00cdot t}+e^{-2ipi f_0cdot 2cdot t})dt$$



                  Simplify and substitute $e^0=1$:



                  $$c_1=frac 1 {2T_0}int_0^{T_0}(1+e^{-4ipi f_0t})dt$$



                  Integrate:
                  $$c_1=frac 1 {2T_0}left(T_0+frac{e^{-4ipi f_0T_0}-e^{-4ipi f_0cdot 0}}{-4ipi f_0}right)$$



                  Substitute $e^{-4ipi f_0T_0}=e^{-4ipi}=1$ and $e^0=1$:
                  $$c_1=frac 1 {2T_0}left(T_0+frac{1-1}{-4ipi f_0}right)=frac{1}{2T_0}T_0=frac 1 2$$



                  I will leave it as an exercise to you to finish it off by showing $c_{-1}=frac 1 2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 days ago









                  Noble MushtakNoble Mushtak

                  15.2k1735




                  15.2k1735






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062765%2fcoefficients-of-fourier-series%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Mario Kart Wii

                      What does “Dominus providebit” mean?

                      Antonio Litta Visconti Arese