prove $a,b,c$ in A.P if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
add a comment |
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
add a comment |
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.
My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$
it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?
trigonometry triangle
trigonometry triangle
asked 23 hours ago
ss1729
1,8491723
1,8491723
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
i was thinking of doing that straightaway .. but is there a better way other than this ?
– ss1729
23 hours ago
add a comment |
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
add a comment |
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
add a comment |
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
i was thinking of doing that straightaway .. but is there a better way other than this ?
– ss1729
23 hours ago
add a comment |
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
i was thinking of doing that straightaway .. but is there a better way other than this ?
– ss1729
23 hours ago
add a comment |
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
$$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$
Use
$$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$
edited 23 hours ago
answered 23 hours ago
lab bhattacharjee
223k15156274
223k15156274
i was thinking of doing that straightaway .. but is there a better way other than this ?
– ss1729
23 hours ago
add a comment |
i was thinking of doing that straightaway .. but is there a better way other than this ?
– ss1729
23 hours ago
i was thinking of doing that straightaway .. but is there a better way other than this ?
– ss1729
23 hours ago
i was thinking of doing that straightaway .. but is there a better way other than this ?
– ss1729
23 hours ago
add a comment |
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
add a comment |
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
add a comment |
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
Can you finish now?
answered 22 hours ago
Dr. Sonnhard Graubner
73.3k42865
73.3k42865
add a comment |
add a comment |
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
add a comment |
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
add a comment |
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
Hint:
Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,
$$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$
answered 22 hours ago
lab bhattacharjee
223k15156274
223k15156274
add a comment |
add a comment |
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
add a comment |
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
add a comment |
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
You can first deduce
$$
tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
=frac{20}{37}
$$
Therefore
$$
sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
$$
Similarly,
$$
sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
$$
By the sine law,
$$
frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
$$
answered 21 hours ago
egreg
178k1484201
178k1484201
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown