prove $a,b,c$ in A.P if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$












1















In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$

it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?










share|cite|improve this question



























    1















    In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




    My Attempt
    $$
    sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
    sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
    $$

    it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?










    share|cite|improve this question

























      1












      1








      1


      1






      In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




      My Attempt
      $$
      sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
      sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
      $$

      it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?










      share|cite|improve this question














      In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




      My Attempt
      $$
      sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
      sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
      $$

      it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?







      trigonometry triangle






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 23 hours ago









      ss1729

      1,8491723




      1,8491723






















          4 Answers
          4






          active

          oldest

          votes


















          0














          $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



          Use



          $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






          share|cite|improve this answer























          • i was thinking of doing that straightaway .. but is there a better way other than this ?
            – ss1729
            23 hours ago





















          0














          It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
          Can you finish now?






          share|cite|improve this answer





























            0














            Hint:



            Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



            $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






            share|cite|improve this answer





























              0














              You can first deduce
              $$
              tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
              frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
              =frac{20}{37}
              $$

              Therefore
              $$
              sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
              $$

              Similarly,
              $$
              sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
              $$

              By the sine law,
              $$
              frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
              bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
              $$






              share|cite|improve this answer





















                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                0














                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






                share|cite|improve this answer























                • i was thinking of doing that straightaway .. but is there a better way other than this ?
                  – ss1729
                  23 hours ago


















                0














                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






                share|cite|improve this answer























                • i was thinking of doing that straightaway .. but is there a better way other than this ?
                  – ss1729
                  23 hours ago
















                0












                0








                0






                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






                share|cite|improve this answer














                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 23 hours ago

























                answered 23 hours ago









                lab bhattacharjee

                223k15156274




                223k15156274












                • i was thinking of doing that straightaway .. but is there a better way other than this ?
                  – ss1729
                  23 hours ago




















                • i was thinking of doing that straightaway .. but is there a better way other than this ?
                  – ss1729
                  23 hours ago


















                i was thinking of doing that straightaway .. but is there a better way other than this ?
                – ss1729
                23 hours ago






                i was thinking of doing that straightaway .. but is there a better way other than this ?
                – ss1729
                23 hours ago













                0














                It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                Can you finish now?






                share|cite|improve this answer


























                  0














                  It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                  Can you finish now?






                  share|cite|improve this answer
























                    0












                    0








                    0






                    It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                    Can you finish now?






                    share|cite|improve this answer












                    It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                    Can you finish now?







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 22 hours ago









                    Dr. Sonnhard Graubner

                    73.3k42865




                    73.3k42865























                        0














                        Hint:



                        Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                        $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






                        share|cite|improve this answer


























                          0














                          Hint:



                          Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                          $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






                          share|cite|improve this answer
























                            0












                            0








                            0






                            Hint:



                            Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                            $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






                            share|cite|improve this answer












                            Hint:



                            Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                            $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 22 hours ago









                            lab bhattacharjee

                            223k15156274




                            223k15156274























                                0














                                You can first deduce
                                $$
                                tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                =frac{20}{37}
                                $$

                                Therefore
                                $$
                                sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                $$

                                Similarly,
                                $$
                                sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                $$

                                By the sine law,
                                $$
                                frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                $$






                                share|cite|improve this answer


























                                  0














                                  You can first deduce
                                  $$
                                  tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                  frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                  =frac{20}{37}
                                  $$

                                  Therefore
                                  $$
                                  sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                  $$

                                  Similarly,
                                  $$
                                  sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                  $$

                                  By the sine law,
                                  $$
                                  frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                  bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                  $$






                                  share|cite|improve this answer
























                                    0












                                    0








                                    0






                                    You can first deduce
                                    $$
                                    tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                    frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                    =frac{20}{37}
                                    $$

                                    Therefore
                                    $$
                                    sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                    $$

                                    Similarly,
                                    $$
                                    sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                    $$

                                    By the sine law,
                                    $$
                                    frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                    bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                    $$






                                    share|cite|improve this answer












                                    You can first deduce
                                    $$
                                    tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                    frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                    =frac{20}{37}
                                    $$

                                    Therefore
                                    $$
                                    sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                    $$

                                    Similarly,
                                    $$
                                    sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                    $$

                                    By the sine law,
                                    $$
                                    frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                    bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                    $$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 21 hours ago









                                    egreg

                                    178k1484201




                                    178k1484201






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.





                                        Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                        Please pay close attention to the following guidance:


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Mario Kart Wii

                                        The Binding of Isaac: Rebirth/Afterbirth

                                        What does “Dominus providebit” mean?