Approximation for confluent hypergeometric function 1F1(-aX,-X,-1)












1












$begingroup$


This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
$$
M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
$$



I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.



Numerically, I find that:



$$
M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
$$
is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
    $$
    M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
    $$



    I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.



    Numerically, I find that:



    $$
    M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
    $$
    is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
      $$
      M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
      $$



      I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.



      Numerically, I find that:



      $$
      M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
      $$
      is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.










      share|cite|improve this question











      $endgroup$




      This question concerns Kummers confluent Hypergeometric function $_1F_1$, sometimes denoted $M$. Recall that
      $$
      M(a;b;z) = {_1F_1 (a;b;z)} = sum_{n=0}^{infty} frac{(-1)^n}{n!}frac{(a)_n}{(b)_n}
      $$



      I am seeking to approximate $M(-lfloor alpha Xrfloor;-X;-1)$ when $X$ is a large positive real and $alpha in [0,1]$, perhaps by way of a series in $alpha$.



      Numerically, I find that:



      $$
      M(-lfloor alpha Xrfloor;-X;-1) approx 1 - left( frac{e-1}{e}+frac{pi}{10}right)alpha + left( frac{pi}{10}right) alpha^2
      $$
      is within 0.4% of the true value when $Xgg100$ and $alpha in [0,1]$. However, I see no combinatorial interpretation, or way to derive this from the hypergeometric series, or general approximation to higher orders.







      power-series approximation hypergeometric-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 22 '17 at 11:10







      Bilal Khan

















      asked May 22 '17 at 10:52









      Bilal KhanBilal Khan

      215




      215






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Since
          $${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
          sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
          \sum_{k=0}^{infty}
          frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
          frac{(-1)^k}{k!}$$

          and
          $$lim_{X to infty}
          frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
          alpha^k,$$

          taking the element-wise limit gives
          $$lim_{X to infty}
          {_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2291818%2fapproximation-for-confluent-hypergeometric-function-1f1-ax-x-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Since
            $${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
            sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
            \sum_{k=0}^{infty}
            frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
            frac{(-1)^k}{k!}$$

            and
            $$lim_{X to infty}
            frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
            alpha^k,$$

            taking the element-wise limit gives
            $$lim_{X to infty}
            {_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Since
              $${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
              sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
              \sum_{k=0}^{infty}
              frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
              frac{(-1)^k}{k!}$$

              and
              $$lim_{X to infty}
              frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
              alpha^k,$$

              taking the element-wise limit gives
              $$lim_{X to infty}
              {_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Since
                $${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
                sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
                \sum_{k=0}^{infty}
                frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
                frac{(-1)^k}{k!}$$

                and
                $$lim_{X to infty}
                frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
                alpha^k,$$

                taking the element-wise limit gives
                $$lim_{X to infty}
                {_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$






                share|cite|improve this answer











                $endgroup$



                Since
                $${_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=
                sum_{k=0}^{infty}frac{(-lflooralpha Xrfloor)_k}{(-X)_k}frac{(-1)^k}{k!}=
                \sum_{k=0}^{infty}
                frac{(lflooralpha Xrfloor)!,(X-k)!}{X!,(lflooralpha Xrfloor-k)!}
                frac{(-1)^k}{k!}$$

                and
                $$lim_{X to infty}
                frac{(alpha X-{alpha X})!,(X-k)!}{X!,(alpha X-{alpha X}-k)!}=
                alpha^k,$$

                taking the element-wise limit gives
                $$lim_{X to infty}
                {_1hspace{-1.5px}F_1}(-lflooralpha Xrfloor;-X;-1)=e^{-alpha}.$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 7 at 2:58

























                answered Jan 20 '18 at 15:16









                MaximMaxim

                4,7281219




                4,7281219






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2291818%2fapproximation-for-confluent-hypergeometric-function-1f1-ax-x-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    What does “Dominus providebit” mean?

                    Antonio Litta Visconti Arese