Reverse kernel of a Markov kernel with density
$begingroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
Assume $kappa$ has a positive density with respect to a measure $mu$ on $(E_2,mathcal E_2)$, i.e. there is a $mathcal E_1otimesmathcal E_2$-measurable $f:E_1times E_2to(0,infty)$ with $$kappa(x,;cdot;)=f(x,;cdot;)mu;;;text{for all }xin E_1.$$ Now, let $nu$ be a probability measure on $(E_1,mathcal E_1)$ and $$overleftarrowkappa_nu(y,;cdot;):=frac1{c(y)}f(;cdot;,y)nu;;;text{for }yin E_2,$$ where $c(y):=intnu({rm d}x)f(x,y)$ (and we assume that $c(y)<infty$) for $yin E_2$.
How can we show that $overleftarrowkappa_nu$ is the reverse kernel of $kappa$ with respect to $nu$ (see Definition 2.1.2), i.e.$^1$ $$intnu({rm d}x)intkappa(x,{rm d}y)g(x,y)=intnukappa({rm d}y)intoverleftarrowkappa_nu(y,{rm d}x)g(x,y)tag1$$ for all bounded and $mathcal E_1otimesmathcal E_2$-measurable $g:E_1times E_2tomathbb R$?
Let $$pi:E_1times E_2to E_2times E_1;,;;;(x,y)mapsto(y,x).$$ It's easy to observe that the left-hand side of $(1)$ is equal to$^2$ $$int g:{rm d}(nuotimeskappa)tag2$$ and the right-hand side is equal to $$int gcircpi^{-1}:{rm d}(nukappaotimesoverleftarrowkappa_nu).tag3$$
Now, it's easy to see that$^3$ $$pi_ast(nuotimeskappa)=muotimesoverleftarrowkappa_nutag4$$ and $$nuotimeskappa=left(pi^{-1}right)_ast(muotimesoverleftarrowkappa_nu)tag5.$$
$(1)$ is claimed in the linked document below the Definition. Could it be the case that their definition of "reverse kernel" is broken? From a terminological point of view it would make more sense to me if $nukappa$ on the right-hand side of $(1)$ would be replaced by $nu$.
$^1$ $nukappa$ denotes the composition of $nu$ and $kappa$.
$^2$ $nuotimeskappa$ denotes the product of $nu$ and $kappa$.
$^3$ $pi_ast(nuotimeskappa)$ denotes the pushforward measure of $pi$ with respect to $nuotimeskappa$.
real-analysis probability-theory measure-theory markov-chains markov-process
$endgroup$
add a comment |
$begingroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
Assume $kappa$ has a positive density with respect to a measure $mu$ on $(E_2,mathcal E_2)$, i.e. there is a $mathcal E_1otimesmathcal E_2$-measurable $f:E_1times E_2to(0,infty)$ with $$kappa(x,;cdot;)=f(x,;cdot;)mu;;;text{for all }xin E_1.$$ Now, let $nu$ be a probability measure on $(E_1,mathcal E_1)$ and $$overleftarrowkappa_nu(y,;cdot;):=frac1{c(y)}f(;cdot;,y)nu;;;text{for }yin E_2,$$ where $c(y):=intnu({rm d}x)f(x,y)$ (and we assume that $c(y)<infty$) for $yin E_2$.
How can we show that $overleftarrowkappa_nu$ is the reverse kernel of $kappa$ with respect to $nu$ (see Definition 2.1.2), i.e.$^1$ $$intnu({rm d}x)intkappa(x,{rm d}y)g(x,y)=intnukappa({rm d}y)intoverleftarrowkappa_nu(y,{rm d}x)g(x,y)tag1$$ for all bounded and $mathcal E_1otimesmathcal E_2$-measurable $g:E_1times E_2tomathbb R$?
Let $$pi:E_1times E_2to E_2times E_1;,;;;(x,y)mapsto(y,x).$$ It's easy to observe that the left-hand side of $(1)$ is equal to$^2$ $$int g:{rm d}(nuotimeskappa)tag2$$ and the right-hand side is equal to $$int gcircpi^{-1}:{rm d}(nukappaotimesoverleftarrowkappa_nu).tag3$$
Now, it's easy to see that$^3$ $$pi_ast(nuotimeskappa)=muotimesoverleftarrowkappa_nutag4$$ and $$nuotimeskappa=left(pi^{-1}right)_ast(muotimesoverleftarrowkappa_nu)tag5.$$
$(1)$ is claimed in the linked document below the Definition. Could it be the case that their definition of "reverse kernel" is broken? From a terminological point of view it would make more sense to me if $nukappa$ on the right-hand side of $(1)$ would be replaced by $nu$.
$^1$ $nukappa$ denotes the composition of $nu$ and $kappa$.
$^2$ $nuotimeskappa$ denotes the product of $nu$ and $kappa$.
$^3$ $pi_ast(nuotimeskappa)$ denotes the pushforward measure of $pi$ with respect to $nuotimeskappa$.
real-analysis probability-theory measure-theory markov-chains markov-process
$endgroup$
add a comment |
$begingroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
Assume $kappa$ has a positive density with respect to a measure $mu$ on $(E_2,mathcal E_2)$, i.e. there is a $mathcal E_1otimesmathcal E_2$-measurable $f:E_1times E_2to(0,infty)$ with $$kappa(x,;cdot;)=f(x,;cdot;)mu;;;text{for all }xin E_1.$$ Now, let $nu$ be a probability measure on $(E_1,mathcal E_1)$ and $$overleftarrowkappa_nu(y,;cdot;):=frac1{c(y)}f(;cdot;,y)nu;;;text{for }yin E_2,$$ where $c(y):=intnu({rm d}x)f(x,y)$ (and we assume that $c(y)<infty$) for $yin E_2$.
How can we show that $overleftarrowkappa_nu$ is the reverse kernel of $kappa$ with respect to $nu$ (see Definition 2.1.2), i.e.$^1$ $$intnu({rm d}x)intkappa(x,{rm d}y)g(x,y)=intnukappa({rm d}y)intoverleftarrowkappa_nu(y,{rm d}x)g(x,y)tag1$$ for all bounded and $mathcal E_1otimesmathcal E_2$-measurable $g:E_1times E_2tomathbb R$?
Let $$pi:E_1times E_2to E_2times E_1;,;;;(x,y)mapsto(y,x).$$ It's easy to observe that the left-hand side of $(1)$ is equal to$^2$ $$int g:{rm d}(nuotimeskappa)tag2$$ and the right-hand side is equal to $$int gcircpi^{-1}:{rm d}(nukappaotimesoverleftarrowkappa_nu).tag3$$
Now, it's easy to see that$^3$ $$pi_ast(nuotimeskappa)=muotimesoverleftarrowkappa_nutag4$$ and $$nuotimeskappa=left(pi^{-1}right)_ast(muotimesoverleftarrowkappa_nu)tag5.$$
$(1)$ is claimed in the linked document below the Definition. Could it be the case that their definition of "reverse kernel" is broken? From a terminological point of view it would make more sense to me if $nukappa$ on the right-hand side of $(1)$ would be replaced by $nu$.
$^1$ $nukappa$ denotes the composition of $nu$ and $kappa$.
$^2$ $nuotimeskappa$ denotes the product of $nu$ and $kappa$.
$^3$ $pi_ast(nuotimeskappa)$ denotes the pushforward measure of $pi$ with respect to $nuotimeskappa$.
real-analysis probability-theory measure-theory markov-chains markov-process
$endgroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
Assume $kappa$ has a positive density with respect to a measure $mu$ on $(E_2,mathcal E_2)$, i.e. there is a $mathcal E_1otimesmathcal E_2$-measurable $f:E_1times E_2to(0,infty)$ with $$kappa(x,;cdot;)=f(x,;cdot;)mu;;;text{for all }xin E_1.$$ Now, let $nu$ be a probability measure on $(E_1,mathcal E_1)$ and $$overleftarrowkappa_nu(y,;cdot;):=frac1{c(y)}f(;cdot;,y)nu;;;text{for }yin E_2,$$ where $c(y):=intnu({rm d}x)f(x,y)$ (and we assume that $c(y)<infty$) for $yin E_2$.
How can we show that $overleftarrowkappa_nu$ is the reverse kernel of $kappa$ with respect to $nu$ (see Definition 2.1.2), i.e.$^1$ $$intnu({rm d}x)intkappa(x,{rm d}y)g(x,y)=intnukappa({rm d}y)intoverleftarrowkappa_nu(y,{rm d}x)g(x,y)tag1$$ for all bounded and $mathcal E_1otimesmathcal E_2$-measurable $g:E_1times E_2tomathbb R$?
Let $$pi:E_1times E_2to E_2times E_1;,;;;(x,y)mapsto(y,x).$$ It's easy to observe that the left-hand side of $(1)$ is equal to$^2$ $$int g:{rm d}(nuotimeskappa)tag2$$ and the right-hand side is equal to $$int gcircpi^{-1}:{rm d}(nukappaotimesoverleftarrowkappa_nu).tag3$$
Now, it's easy to see that$^3$ $$pi_ast(nuotimeskappa)=muotimesoverleftarrowkappa_nutag4$$ and $$nuotimeskappa=left(pi^{-1}right)_ast(muotimesoverleftarrowkappa_nu)tag5.$$
$(1)$ is claimed in the linked document below the Definition. Could it be the case that their definition of "reverse kernel" is broken? From a terminological point of view it would make more sense to me if $nukappa$ on the right-hand side of $(1)$ would be replaced by $nu$.
$^1$ $nukappa$ denotes the composition of $nu$ and $kappa$.
$^2$ $nuotimeskappa$ denotes the product of $nu$ and $kappa$.
$^3$ $pi_ast(nuotimeskappa)$ denotes the pushforward measure of $pi$ with respect to $nuotimeskappa$.
real-analysis probability-theory measure-theory markov-chains markov-process
real-analysis probability-theory measure-theory markov-chains markov-process
edited Jan 12 at 22:09
0xbadf00d
asked Jan 11 at 22:55
0xbadf00d0xbadf00d
1,90441530
1,90441530
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070416%2freverse-kernel-of-a-markov-kernel-with-density%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070416%2freverse-kernel-of-a-markov-kernel-with-density%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown