Calculating UMVUE for Poisson distribution












2












$begingroup$


I've started to learn methods of finding UMVUE distribution. I found some nice examples on this site.



I got stuck while evaluating UMVUE for Poisson distribution for a parametric function $g(theta)$.
enter image description here



How did the author get
$$sum_{t=o}^infty frac{h(t) n^t}{t!} theta^t = e^{n theta}g(theta)?$$
I thought
$$mathbb{E}(h(x)) = g(theta)$$
should be considered.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I will just mention that there is a discussion on meta about the newly created (umvue) tag. (It seemed reasonable to let the tag-creator know about this.)
    $endgroup$
    – Martin Sleziak
    Jan 10 at 8:35
















2












$begingroup$


I've started to learn methods of finding UMVUE distribution. I found some nice examples on this site.



I got stuck while evaluating UMVUE for Poisson distribution for a parametric function $g(theta)$.
enter image description here



How did the author get
$$sum_{t=o}^infty frac{h(t) n^t}{t!} theta^t = e^{n theta}g(theta)?$$
I thought
$$mathbb{E}(h(x)) = g(theta)$$
should be considered.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I will just mention that there is a discussion on meta about the newly created (umvue) tag. (It seemed reasonable to let the tag-creator know about this.)
    $endgroup$
    – Martin Sleziak
    Jan 10 at 8:35














2












2








2





$begingroup$


I've started to learn methods of finding UMVUE distribution. I found some nice examples on this site.



I got stuck while evaluating UMVUE for Poisson distribution for a parametric function $g(theta)$.
enter image description here



How did the author get
$$sum_{t=o}^infty frac{h(t) n^t}{t!} theta^t = e^{n theta}g(theta)?$$
I thought
$$mathbb{E}(h(x)) = g(theta)$$
should be considered.










share|cite|improve this question











$endgroup$




I've started to learn methods of finding UMVUE distribution. I found some nice examples on this site.



I got stuck while evaluating UMVUE for Poisson distribution for a parametric function $g(theta)$.
enter image description here



How did the author get
$$sum_{t=o}^infty frac{h(t) n^t}{t!} theta^t = e^{n theta}g(theta)?$$
I thought
$$mathbb{E}(h(x)) = g(theta)$$
should be considered.







statistics parameter-estimation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 11:47









Saad

19.7k92352




19.7k92352










asked Jan 9 at 17:27









HendrraHendrra

1,163516




1,163516








  • 1




    $begingroup$
    I will just mention that there is a discussion on meta about the newly created (umvue) tag. (It seemed reasonable to let the tag-creator know about this.)
    $endgroup$
    – Martin Sleziak
    Jan 10 at 8:35














  • 1




    $begingroup$
    I will just mention that there is a discussion on meta about the newly created (umvue) tag. (It seemed reasonable to let the tag-creator know about this.)
    $endgroup$
    – Martin Sleziak
    Jan 10 at 8:35








1




1




$begingroup$
I will just mention that there is a discussion on meta about the newly created (umvue) tag. (It seemed reasonable to let the tag-creator know about this.)
$endgroup$
– Martin Sleziak
Jan 10 at 8:35




$begingroup$
I will just mention that there is a discussion on meta about the newly created (umvue) tag. (It seemed reasonable to let the tag-creator know about this.)
$endgroup$
– Martin Sleziak
Jan 10 at 8:35










1 Answer
1






active

oldest

votes


















3












$begingroup$

Observe
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!}text{.}$$
Set $lambda = ntheta$. Then
$$sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)lambda^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)e^{-lambda}e^{lambda}lambda^t}{t!} = e^{lambda}sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right]text{.}$$
Since $T sim P(lambda)$ (using the notation in your image), then
$$sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right] = mathbb{E}[h(T)] = g(theta)$$
due to unbiasedness, hence
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = e^{lambda}g(theta)=e^{ntheta}g(theta)text{.}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you! That's an awesome solution
    $endgroup$
    – Hendrra
    Jan 9 at 17:42











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067739%2fcalculating-umvue-for-poisson-distribution%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Observe
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!}text{.}$$
Set $lambda = ntheta$. Then
$$sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)lambda^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)e^{-lambda}e^{lambda}lambda^t}{t!} = e^{lambda}sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right]text{.}$$
Since $T sim P(lambda)$ (using the notation in your image), then
$$sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right] = mathbb{E}[h(T)] = g(theta)$$
due to unbiasedness, hence
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = e^{lambda}g(theta)=e^{ntheta}g(theta)text{.}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you! That's an awesome solution
    $endgroup$
    – Hendrra
    Jan 9 at 17:42
















3












$begingroup$

Observe
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!}text{.}$$
Set $lambda = ntheta$. Then
$$sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)lambda^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)e^{-lambda}e^{lambda}lambda^t}{t!} = e^{lambda}sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right]text{.}$$
Since $T sim P(lambda)$ (using the notation in your image), then
$$sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right] = mathbb{E}[h(T)] = g(theta)$$
due to unbiasedness, hence
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = e^{lambda}g(theta)=e^{ntheta}g(theta)text{.}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you! That's an awesome solution
    $endgroup$
    – Hendrra
    Jan 9 at 17:42














3












3








3





$begingroup$

Observe
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!}text{.}$$
Set $lambda = ntheta$. Then
$$sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)lambda^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)e^{-lambda}e^{lambda}lambda^t}{t!} = e^{lambda}sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right]text{.}$$
Since $T sim P(lambda)$ (using the notation in your image), then
$$sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right] = mathbb{E}[h(T)] = g(theta)$$
due to unbiasedness, hence
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = e^{lambda}g(theta)=e^{ntheta}g(theta)text{.}$$






share|cite|improve this answer











$endgroup$



Observe
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!}text{.}$$
Set $lambda = ntheta$. Then
$$sum_{t=0}^{infty}dfrac{h(t)(ntheta)^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)lambda^t}{t!} = sum_{t=0}^{infty}dfrac{h(t)e^{-lambda}e^{lambda}lambda^t}{t!} = e^{lambda}sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right]text{.}$$
Since $T sim P(lambda)$ (using the notation in your image), then
$$sum_{t=0}^{infty}left[h(t)cdot dfrac{e^{-lambda}lambda^t}{t!}right] = mathbb{E}[h(T)] = g(theta)$$
due to unbiasedness, hence
$$sum_{t=0}^{infty}dfrac{h(t)n^t}{t!}theta^t = e^{lambda}g(theta)=e^{ntheta}g(theta)text{.}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 9 at 17:46

























answered Jan 9 at 17:34









ClarinetistClarinetist

10.9k42778




10.9k42778












  • $begingroup$
    Thank you! That's an awesome solution
    $endgroup$
    – Hendrra
    Jan 9 at 17:42


















  • $begingroup$
    Thank you! That's an awesome solution
    $endgroup$
    – Hendrra
    Jan 9 at 17:42
















$begingroup$
Thank you! That's an awesome solution
$endgroup$
– Hendrra
Jan 9 at 17:42




$begingroup$
Thank you! That's an awesome solution
$endgroup$
– Hendrra
Jan 9 at 17:42


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067739%2fcalculating-umvue-for-poisson-distribution%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?