Trick for Inverse Hollow Matrix Calculation (Self-Answered)












1














Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.










share|cite|improve this question






















  • What do you mean by "a hollow matrix" ?
    – Jean Marie
    5 hours ago
















1














Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.










share|cite|improve this question






















  • What do you mean by "a hollow matrix" ?
    – Jean Marie
    5 hours ago














1












1








1







Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.










share|cite|improve this question













Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.







linear-algebra matrices inverse






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 days ago









NetUser5y62NetUser5y62

418214




418214












  • What do you mean by "a hollow matrix" ?
    – Jean Marie
    5 hours ago


















  • What do you mean by "a hollow matrix" ?
    – Jean Marie
    5 hours ago
















What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago




What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago










1 Answer
1






active

oldest

votes


















2














Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer























  • You can generalize this to $alpha I+beta B$.
    – amd
    2 days ago












  • This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    – Jean Marie
    5 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062821%2ftrick-for-inverse-hollow-matrix-calculation-self-answered%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2














Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer























  • You can generalize this to $alpha I+beta B$.
    – amd
    2 days ago












  • This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    – Jean Marie
    5 hours ago
















2














Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer























  • You can generalize this to $alpha I+beta B$.
    – amd
    2 days ago












  • This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    – Jean Marie
    5 hours ago














2












2








2






Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer














Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









NetUser5y62NetUser5y62

418214




418214












  • You can generalize this to $alpha I+beta B$.
    – amd
    2 days ago












  • This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    – Jean Marie
    5 hours ago


















  • You can generalize this to $alpha I+beta B$.
    – amd
    2 days ago












  • This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    – Jean Marie
    5 hours ago
















You can generalize this to $alpha I+beta B$.
– amd
2 days ago






You can generalize this to $alpha I+beta B$.
– amd
2 days ago














This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago




This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062821%2ftrick-for-inverse-hollow-matrix-calculation-self-answered%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?