Trick for Inverse Hollow Matrix Calculation (Self-Answered)
Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$
Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.
linear-algebra matrices inverse
add a comment |
Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$
Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.
linear-algebra matrices inverse
What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago
add a comment |
Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$
Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.
linear-algebra matrices inverse
Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$
Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.
linear-algebra matrices inverse
linear-algebra matrices inverse
asked 2 days ago
NetUser5y62NetUser5y62
418214
418214
What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago
add a comment |
What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago
What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago
What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago
add a comment |
1 Answer
1
active
oldest
votes
Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$
Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$
then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$
Therefore $A^{-1}=frac{1}{3}(A-2I)$.
More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.
You can generalize this to $alpha I+beta B$.
– amd
2 days ago
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062821%2ftrick-for-inverse-hollow-matrix-calculation-self-answered%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$
Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$
then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$
Therefore $A^{-1}=frac{1}{3}(A-2I)$.
More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.
You can generalize this to $alpha I+beta B$.
– amd
2 days ago
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago
add a comment |
Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$
Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$
then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$
Therefore $A^{-1}=frac{1}{3}(A-2I)$.
More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.
You can generalize this to $alpha I+beta B$.
– amd
2 days ago
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago
add a comment |
Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$
Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$
then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$
Therefore $A^{-1}=frac{1}{3}(A-2I)$.
More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.
Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$
Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$
then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$
Therefore $A^{-1}=frac{1}{3}(A-2I)$.
More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.
edited 2 days ago
answered 2 days ago
NetUser5y62NetUser5y62
418214
418214
You can generalize this to $alpha I+beta B$.
– amd
2 days ago
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago
add a comment |
You can generalize this to $alpha I+beta B$.
– amd
2 days ago
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago
You can generalize this to $alpha I+beta B$.
– amd
2 days ago
You can generalize this to $alpha I+beta B$.
– amd
2 days ago
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
– Jean Marie
5 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062821%2ftrick-for-inverse-hollow-matrix-calculation-self-answered%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What do you mean by "a hollow matrix" ?
– Jean Marie
5 hours ago