Prove or disprove that there exists $K$ such that $|f(x)-f(y)|leq K |x-y|,;forall;;x,yin[0,1],$ edited...
Let $f$ be a function on $[0,1]$ into $Bbb{R}$. Suppose that if $xin[0,1],$ there exists $K_x$ such that begin{align}|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].end{align}
Prove or disprove that there exists $K$ such that begin{align}|f(x)-f(y)|leq K |x-y|,;forall;;x,yin[0,1].end{align}
DISPROOF
Consider the function begin{align} f:[0&,1]to
Bbb{R}, \&xmapsto sqrt{x} end{align}
Let $x=0$ and $yin (0,1]$ be fixed. Then,
begin{align} left| f(0)-f(y) right|&=left|0-sqrt{y} right| end{align}
Take $y=1/(4n^2)$ for all $n.$ Then,
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=left|0-dfrac{1}{sqrt{4n^2}} right| \&=2n^{3/2}left|dfrac{1}{4n^2} -0 right| end{align}
By assumption, there exists $K_0$ such that
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=2n^{3/2}left|dfrac{1}{4n^2} -0 right|leq K_0left|dfrac{1}{4n^2} -0 right| end{align}
Sending $ntoinfty,$ we have
begin{align} infty leq K_0<infty,;;text{contradiction}. end{align}
Hence, the function $f$ is not Lipschitz in $[0,1]$.
QUESTION: Is my disproof correct?
real-analysis analysis lipschitz-functions
|
show 4 more comments
Let $f$ be a function on $[0,1]$ into $Bbb{R}$. Suppose that if $xin[0,1],$ there exists $K_x$ such that begin{align}|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].end{align}
Prove or disprove that there exists $K$ such that begin{align}|f(x)-f(y)|leq K |x-y|,;forall;;x,yin[0,1].end{align}
DISPROOF
Consider the function begin{align} f:[0&,1]to
Bbb{R}, \&xmapsto sqrt{x} end{align}
Let $x=0$ and $yin (0,1]$ be fixed. Then,
begin{align} left| f(0)-f(y) right|&=left|0-sqrt{y} right| end{align}
Take $y=1/(4n^2)$ for all $n.$ Then,
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=left|0-dfrac{1}{sqrt{4n^2}} right| \&=2n^{3/2}left|dfrac{1}{4n^2} -0 right| end{align}
By assumption, there exists $K_0$ such that
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=2n^{3/2}left|dfrac{1}{4n^2} -0 right|leq K_0left|dfrac{1}{4n^2} -0 right| end{align}
Sending $ntoinfty,$ we have
begin{align} infty leq K_0<infty,;;text{contradiction}. end{align}
Hence, the function $f$ is not Lipschitz in $[0,1]$.
QUESTION: Is my disproof correct?
real-analysis analysis lipschitz-functions
1
I would suggest that before you start the computation you actually write explicitly the claim whose truth you need to decide. Is $f$ supposed to be continuous? Are there any other assumptions? Once that is explicit, say what you are going to do: "We will show that the statement fails in general by providing a counterexample. Note that it is enough to show that there is a differentiable $f$ with unbounded derivative, because ..." Only after you've done that, proceed with your counterexample. People don't want to put up with a wall of symbols if they don't know its purpose.
– Andrés E. Caicedo
2 days ago
1
It would be much simpler to just define $f:[0,1]toBbb R$ by $f(x)=sqrt{x}.$ There is no need for a piecewise definition.
– Cameron Buie
2 days ago
1
Nice proof, but you forgot to mention the question. I assume the question was: if $f$ is continuous, then prove that there exists $K$ such that $|f(x) - f(y)| le K |x - y|$ for all $x, y$, or else find a counterexample $f$.
– 6005
2 days ago
Also, $f$ is not differentiable at $0$. So you should say that $f|_{(0,1)}$ is differentiable but the derivative is unbounded, thus a constant $K$ cannot exist for $f|_{(0,1)}$, thus a constant $K$ cannot exist for $f$ either.
– 6005
2 days ago
related
– Omnomnomnom
2 days ago
|
show 4 more comments
Let $f$ be a function on $[0,1]$ into $Bbb{R}$. Suppose that if $xin[0,1],$ there exists $K_x$ such that begin{align}|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].end{align}
Prove or disprove that there exists $K$ such that begin{align}|f(x)-f(y)|leq K |x-y|,;forall;;x,yin[0,1].end{align}
DISPROOF
Consider the function begin{align} f:[0&,1]to
Bbb{R}, \&xmapsto sqrt{x} end{align}
Let $x=0$ and $yin (0,1]$ be fixed. Then,
begin{align} left| f(0)-f(y) right|&=left|0-sqrt{y} right| end{align}
Take $y=1/(4n^2)$ for all $n.$ Then,
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=left|0-dfrac{1}{sqrt{4n^2}} right| \&=2n^{3/2}left|dfrac{1}{4n^2} -0 right| end{align}
By assumption, there exists $K_0$ such that
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=2n^{3/2}left|dfrac{1}{4n^2} -0 right|leq K_0left|dfrac{1}{4n^2} -0 right| end{align}
Sending $ntoinfty,$ we have
begin{align} infty leq K_0<infty,;;text{contradiction}. end{align}
Hence, the function $f$ is not Lipschitz in $[0,1]$.
QUESTION: Is my disproof correct?
real-analysis analysis lipschitz-functions
Let $f$ be a function on $[0,1]$ into $Bbb{R}$. Suppose that if $xin[0,1],$ there exists $K_x$ such that begin{align}|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].end{align}
Prove or disprove that there exists $K$ such that begin{align}|f(x)-f(y)|leq K |x-y|,;forall;;x,yin[0,1].end{align}
DISPROOF
Consider the function begin{align} f:[0&,1]to
Bbb{R}, \&xmapsto sqrt{x} end{align}
Let $x=0$ and $yin (0,1]$ be fixed. Then,
begin{align} left| f(0)-f(y) right|&=left|0-sqrt{y} right| end{align}
Take $y=1/(4n^2)$ for all $n.$ Then,
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=left|0-dfrac{1}{sqrt{4n^2}} right| \&=2n^{3/2}left|dfrac{1}{4n^2} -0 right| end{align}
By assumption, there exists $K_0$ such that
begin{align} left| f(0)-fleft(dfrac{1}{4n^2}right) right|&=2n^{3/2}left|dfrac{1}{4n^2} -0 right|leq K_0left|dfrac{1}{4n^2} -0 right| end{align}
Sending $ntoinfty,$ we have
begin{align} infty leq K_0<infty,;;text{contradiction}. end{align}
Hence, the function $f$ is not Lipschitz in $[0,1]$.
QUESTION: Is my disproof correct?
real-analysis analysis lipschitz-functions
real-analysis analysis lipschitz-functions
edited 16 hours ago
Mike
asked 2 days ago
MikeMike
1,534321
1,534321
1
I would suggest that before you start the computation you actually write explicitly the claim whose truth you need to decide. Is $f$ supposed to be continuous? Are there any other assumptions? Once that is explicit, say what you are going to do: "We will show that the statement fails in general by providing a counterexample. Note that it is enough to show that there is a differentiable $f$ with unbounded derivative, because ..." Only after you've done that, proceed with your counterexample. People don't want to put up with a wall of symbols if they don't know its purpose.
– Andrés E. Caicedo
2 days ago
1
It would be much simpler to just define $f:[0,1]toBbb R$ by $f(x)=sqrt{x}.$ There is no need for a piecewise definition.
– Cameron Buie
2 days ago
1
Nice proof, but you forgot to mention the question. I assume the question was: if $f$ is continuous, then prove that there exists $K$ such that $|f(x) - f(y)| le K |x - y|$ for all $x, y$, or else find a counterexample $f$.
– 6005
2 days ago
Also, $f$ is not differentiable at $0$. So you should say that $f|_{(0,1)}$ is differentiable but the derivative is unbounded, thus a constant $K$ cannot exist for $f|_{(0,1)}$, thus a constant $K$ cannot exist for $f$ either.
– 6005
2 days ago
related
– Omnomnomnom
2 days ago
|
show 4 more comments
1
I would suggest that before you start the computation you actually write explicitly the claim whose truth you need to decide. Is $f$ supposed to be continuous? Are there any other assumptions? Once that is explicit, say what you are going to do: "We will show that the statement fails in general by providing a counterexample. Note that it is enough to show that there is a differentiable $f$ with unbounded derivative, because ..." Only after you've done that, proceed with your counterexample. People don't want to put up with a wall of symbols if they don't know its purpose.
– Andrés E. Caicedo
2 days ago
1
It would be much simpler to just define $f:[0,1]toBbb R$ by $f(x)=sqrt{x}.$ There is no need for a piecewise definition.
– Cameron Buie
2 days ago
1
Nice proof, but you forgot to mention the question. I assume the question was: if $f$ is continuous, then prove that there exists $K$ such that $|f(x) - f(y)| le K |x - y|$ for all $x, y$, or else find a counterexample $f$.
– 6005
2 days ago
Also, $f$ is not differentiable at $0$. So you should say that $f|_{(0,1)}$ is differentiable but the derivative is unbounded, thus a constant $K$ cannot exist for $f|_{(0,1)}$, thus a constant $K$ cannot exist for $f$ either.
– 6005
2 days ago
related
– Omnomnomnom
2 days ago
1
1
I would suggest that before you start the computation you actually write explicitly the claim whose truth you need to decide. Is $f$ supposed to be continuous? Are there any other assumptions? Once that is explicit, say what you are going to do: "We will show that the statement fails in general by providing a counterexample. Note that it is enough to show that there is a differentiable $f$ with unbounded derivative, because ..." Only after you've done that, proceed with your counterexample. People don't want to put up with a wall of symbols if they don't know its purpose.
– Andrés E. Caicedo
2 days ago
I would suggest that before you start the computation you actually write explicitly the claim whose truth you need to decide. Is $f$ supposed to be continuous? Are there any other assumptions? Once that is explicit, say what you are going to do: "We will show that the statement fails in general by providing a counterexample. Note that it is enough to show that there is a differentiable $f$ with unbounded derivative, because ..." Only after you've done that, proceed with your counterexample. People don't want to put up with a wall of symbols if they don't know its purpose.
– Andrés E. Caicedo
2 days ago
1
1
It would be much simpler to just define $f:[0,1]toBbb R$ by $f(x)=sqrt{x}.$ There is no need for a piecewise definition.
– Cameron Buie
2 days ago
It would be much simpler to just define $f:[0,1]toBbb R$ by $f(x)=sqrt{x}.$ There is no need for a piecewise definition.
– Cameron Buie
2 days ago
1
1
Nice proof, but you forgot to mention the question. I assume the question was: if $f$ is continuous, then prove that there exists $K$ such that $|f(x) - f(y)| le K |x - y|$ for all $x, y$, or else find a counterexample $f$.
– 6005
2 days ago
Nice proof, but you forgot to mention the question. I assume the question was: if $f$ is continuous, then prove that there exists $K$ such that $|f(x) - f(y)| le K |x - y|$ for all $x, y$, or else find a counterexample $f$.
– 6005
2 days ago
Also, $f$ is not differentiable at $0$. So you should say that $f|_{(0,1)}$ is differentiable but the derivative is unbounded, thus a constant $K$ cannot exist for $f|_{(0,1)}$, thus a constant $K$ cannot exist for $f$ either.
– 6005
2 days ago
Also, $f$ is not differentiable at $0$. So you should say that $f|_{(0,1)}$ is differentiable but the derivative is unbounded, thus a constant $K$ cannot exist for $f|_{(0,1)}$, thus a constant $K$ cannot exist for $f$ either.
– 6005
2 days ago
related
– Omnomnomnom
2 days ago
related
– Omnomnomnom
2 days ago
|
show 4 more comments
2 Answers
2
active
oldest
votes
You are correct, the function $f$ is not Lipschitz in $[0,1]$, but your argument should be modified. You may simply say that
$$frac{f(1/n)-f(0)}{frac{1}{n}-0}=sqrt{n}to +infty$$
which contradicts the fact that $|f(x)-f(y)|/|x-y|$ is bounded by a constant $K$.
On the other hand this is not a counterexample for your statement. For the same reason as above (Just take $y=1/n$), for $x=0$ there is no constant $K_0$ such that
$$|f(0)-f(y)|leq K_0 |0-y|,;;forall yin[0,1].$$
Instead consider the function
$$f(x)=cases{xsin(1/x)& if $xnot=0$\0& if $x=0$,}$$
If $x_n=1/(2pi n)$ and $y_n=1/(2pi n+pi/2)$.
then $|f(x_n)-f(y_n)|/|x_n-y_n|$ is unbounded which implies that $f$ is not Lipschitz in $[0,1]$, but for any $xin[0,1],$ there exists $K_x$ such that $$|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].$$
In fact take $K_0=1$ and for $xin(0,1]$ the existence of $K_x$ follows from
$f'in C^1((0,1])$.
@Mike I added a few lines. Your disproof is incorrect.
– Robert Z
2 days ago
You might mention why the correct counterexample does satisfy the hypothesis. (If $f$ is differentiable at $$ then $K_x$ exists...)
– David C. Ullrich
2 days ago
add a comment |
This isn't incorrect per se, but its unnecessarily convoluted. To show that $f'$ is unbounded, just observe that $f'(x)=frac{1}{2sqrt{x}}$ so that $lim_{xto 0^+}f'(x)=infty$. Hence, $f$ is not Lipschitz on $[0,1]$, which is precisely what you want to prove. That's all you need to say.
The last part is a little hand-wavy though. Technically, you should say something like this: $f$ is Lipschitz on $[epsilon,1]$ with constant $K_epsilon:=sup_{epsilonleq xleq 1}|f'(x)|$. Since $K_epsilontoinfty$ as $epsilonto 0^+$, $f$ is not Lipschitz on $[0,1]$.
Better still just to do an explicit calculation, as the other fellow did.
Thanks a lot, Ben W! I really learnt a lot from you! Kindly check my post, I edited it! (+1)
– Mike
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062809%2fprove-or-disprove-that-there-exists-k-such-that-fx-fy-leq-k-x-y-fo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
You are correct, the function $f$ is not Lipschitz in $[0,1]$, but your argument should be modified. You may simply say that
$$frac{f(1/n)-f(0)}{frac{1}{n}-0}=sqrt{n}to +infty$$
which contradicts the fact that $|f(x)-f(y)|/|x-y|$ is bounded by a constant $K$.
On the other hand this is not a counterexample for your statement. For the same reason as above (Just take $y=1/n$), for $x=0$ there is no constant $K_0$ such that
$$|f(0)-f(y)|leq K_0 |0-y|,;;forall yin[0,1].$$
Instead consider the function
$$f(x)=cases{xsin(1/x)& if $xnot=0$\0& if $x=0$,}$$
If $x_n=1/(2pi n)$ and $y_n=1/(2pi n+pi/2)$.
then $|f(x_n)-f(y_n)|/|x_n-y_n|$ is unbounded which implies that $f$ is not Lipschitz in $[0,1]$, but for any $xin[0,1],$ there exists $K_x$ such that $$|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].$$
In fact take $K_0=1$ and for $xin(0,1]$ the existence of $K_x$ follows from
$f'in C^1((0,1])$.
@Mike I added a few lines. Your disproof is incorrect.
– Robert Z
2 days ago
You might mention why the correct counterexample does satisfy the hypothesis. (If $f$ is differentiable at $$ then $K_x$ exists...)
– David C. Ullrich
2 days ago
add a comment |
You are correct, the function $f$ is not Lipschitz in $[0,1]$, but your argument should be modified. You may simply say that
$$frac{f(1/n)-f(0)}{frac{1}{n}-0}=sqrt{n}to +infty$$
which contradicts the fact that $|f(x)-f(y)|/|x-y|$ is bounded by a constant $K$.
On the other hand this is not a counterexample for your statement. For the same reason as above (Just take $y=1/n$), for $x=0$ there is no constant $K_0$ such that
$$|f(0)-f(y)|leq K_0 |0-y|,;;forall yin[0,1].$$
Instead consider the function
$$f(x)=cases{xsin(1/x)& if $xnot=0$\0& if $x=0$,}$$
If $x_n=1/(2pi n)$ and $y_n=1/(2pi n+pi/2)$.
then $|f(x_n)-f(y_n)|/|x_n-y_n|$ is unbounded which implies that $f$ is not Lipschitz in $[0,1]$, but for any $xin[0,1],$ there exists $K_x$ such that $$|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].$$
In fact take $K_0=1$ and for $xin(0,1]$ the existence of $K_x$ follows from
$f'in C^1((0,1])$.
@Mike I added a few lines. Your disproof is incorrect.
– Robert Z
2 days ago
You might mention why the correct counterexample does satisfy the hypothesis. (If $f$ is differentiable at $$ then $K_x$ exists...)
– David C. Ullrich
2 days ago
add a comment |
You are correct, the function $f$ is not Lipschitz in $[0,1]$, but your argument should be modified. You may simply say that
$$frac{f(1/n)-f(0)}{frac{1}{n}-0}=sqrt{n}to +infty$$
which contradicts the fact that $|f(x)-f(y)|/|x-y|$ is bounded by a constant $K$.
On the other hand this is not a counterexample for your statement. For the same reason as above (Just take $y=1/n$), for $x=0$ there is no constant $K_0$ such that
$$|f(0)-f(y)|leq K_0 |0-y|,;;forall yin[0,1].$$
Instead consider the function
$$f(x)=cases{xsin(1/x)& if $xnot=0$\0& if $x=0$,}$$
If $x_n=1/(2pi n)$ and $y_n=1/(2pi n+pi/2)$.
then $|f(x_n)-f(y_n)|/|x_n-y_n|$ is unbounded which implies that $f$ is not Lipschitz in $[0,1]$, but for any $xin[0,1],$ there exists $K_x$ such that $$|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].$$
In fact take $K_0=1$ and for $xin(0,1]$ the existence of $K_x$ follows from
$f'in C^1((0,1])$.
You are correct, the function $f$ is not Lipschitz in $[0,1]$, but your argument should be modified. You may simply say that
$$frac{f(1/n)-f(0)}{frac{1}{n}-0}=sqrt{n}to +infty$$
which contradicts the fact that $|f(x)-f(y)|/|x-y|$ is bounded by a constant $K$.
On the other hand this is not a counterexample for your statement. For the same reason as above (Just take $y=1/n$), for $x=0$ there is no constant $K_0$ such that
$$|f(0)-f(y)|leq K_0 |0-y|,;;forall yin[0,1].$$
Instead consider the function
$$f(x)=cases{xsin(1/x)& if $xnot=0$\0& if $x=0$,}$$
If $x_n=1/(2pi n)$ and $y_n=1/(2pi n+pi/2)$.
then $|f(x_n)-f(y_n)|/|x_n-y_n|$ is unbounded which implies that $f$ is not Lipschitz in $[0,1]$, but for any $xin[0,1],$ there exists $K_x$ such that $$|f(x)-f(y)|leq K_x |x-y|,;;forall;;yin[0,1].$$
In fact take $K_0=1$ and for $xin(0,1]$ the existence of $K_x$ follows from
$f'in C^1((0,1])$.
edited yesterday
answered 2 days ago
Robert ZRobert Z
93.8k1061132
93.8k1061132
@Mike I added a few lines. Your disproof is incorrect.
– Robert Z
2 days ago
You might mention why the correct counterexample does satisfy the hypothesis. (If $f$ is differentiable at $$ then $K_x$ exists...)
– David C. Ullrich
2 days ago
add a comment |
@Mike I added a few lines. Your disproof is incorrect.
– Robert Z
2 days ago
You might mention why the correct counterexample does satisfy the hypothesis. (If $f$ is differentiable at $$ then $K_x$ exists...)
– David C. Ullrich
2 days ago
@Mike I added a few lines. Your disproof is incorrect.
– Robert Z
2 days ago
@Mike I added a few lines. Your disproof is incorrect.
– Robert Z
2 days ago
You might mention why the correct counterexample does satisfy the hypothesis. (If $f$ is differentiable at $$ then $K_x$ exists...)
– David C. Ullrich
2 days ago
You might mention why the correct counterexample does satisfy the hypothesis. (If $f$ is differentiable at $$ then $K_x$ exists...)
– David C. Ullrich
2 days ago
add a comment |
This isn't incorrect per se, but its unnecessarily convoluted. To show that $f'$ is unbounded, just observe that $f'(x)=frac{1}{2sqrt{x}}$ so that $lim_{xto 0^+}f'(x)=infty$. Hence, $f$ is not Lipschitz on $[0,1]$, which is precisely what you want to prove. That's all you need to say.
The last part is a little hand-wavy though. Technically, you should say something like this: $f$ is Lipschitz on $[epsilon,1]$ with constant $K_epsilon:=sup_{epsilonleq xleq 1}|f'(x)|$. Since $K_epsilontoinfty$ as $epsilonto 0^+$, $f$ is not Lipschitz on $[0,1]$.
Better still just to do an explicit calculation, as the other fellow did.
Thanks a lot, Ben W! I really learnt a lot from you! Kindly check my post, I edited it! (+1)
– Mike
2 days ago
add a comment |
This isn't incorrect per se, but its unnecessarily convoluted. To show that $f'$ is unbounded, just observe that $f'(x)=frac{1}{2sqrt{x}}$ so that $lim_{xto 0^+}f'(x)=infty$. Hence, $f$ is not Lipschitz on $[0,1]$, which is precisely what you want to prove. That's all you need to say.
The last part is a little hand-wavy though. Technically, you should say something like this: $f$ is Lipschitz on $[epsilon,1]$ with constant $K_epsilon:=sup_{epsilonleq xleq 1}|f'(x)|$. Since $K_epsilontoinfty$ as $epsilonto 0^+$, $f$ is not Lipschitz on $[0,1]$.
Better still just to do an explicit calculation, as the other fellow did.
Thanks a lot, Ben W! I really learnt a lot from you! Kindly check my post, I edited it! (+1)
– Mike
2 days ago
add a comment |
This isn't incorrect per se, but its unnecessarily convoluted. To show that $f'$ is unbounded, just observe that $f'(x)=frac{1}{2sqrt{x}}$ so that $lim_{xto 0^+}f'(x)=infty$. Hence, $f$ is not Lipschitz on $[0,1]$, which is precisely what you want to prove. That's all you need to say.
The last part is a little hand-wavy though. Technically, you should say something like this: $f$ is Lipschitz on $[epsilon,1]$ with constant $K_epsilon:=sup_{epsilonleq xleq 1}|f'(x)|$. Since $K_epsilontoinfty$ as $epsilonto 0^+$, $f$ is not Lipschitz on $[0,1]$.
Better still just to do an explicit calculation, as the other fellow did.
This isn't incorrect per se, but its unnecessarily convoluted. To show that $f'$ is unbounded, just observe that $f'(x)=frac{1}{2sqrt{x}}$ so that $lim_{xto 0^+}f'(x)=infty$. Hence, $f$ is not Lipschitz on $[0,1]$, which is precisely what you want to prove. That's all you need to say.
The last part is a little hand-wavy though. Technically, you should say something like this: $f$ is Lipschitz on $[epsilon,1]$ with constant $K_epsilon:=sup_{epsilonleq xleq 1}|f'(x)|$. Since $K_epsilontoinfty$ as $epsilonto 0^+$, $f$ is not Lipschitz on $[0,1]$.
Better still just to do an explicit calculation, as the other fellow did.
edited 2 days ago
answered 2 days ago
Ben WBen W
1,995615
1,995615
Thanks a lot, Ben W! I really learnt a lot from you! Kindly check my post, I edited it! (+1)
– Mike
2 days ago
add a comment |
Thanks a lot, Ben W! I really learnt a lot from you! Kindly check my post, I edited it! (+1)
– Mike
2 days ago
Thanks a lot, Ben W! I really learnt a lot from you! Kindly check my post, I edited it! (+1)
– Mike
2 days ago
Thanks a lot, Ben W! I really learnt a lot from you! Kindly check my post, I edited it! (+1)
– Mike
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062809%2fprove-or-disprove-that-there-exists-k-such-that-fx-fy-leq-k-x-y-fo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
I would suggest that before you start the computation you actually write explicitly the claim whose truth you need to decide. Is $f$ supposed to be continuous? Are there any other assumptions? Once that is explicit, say what you are going to do: "We will show that the statement fails in general by providing a counterexample. Note that it is enough to show that there is a differentiable $f$ with unbounded derivative, because ..." Only after you've done that, proceed with your counterexample. People don't want to put up with a wall of symbols if they don't know its purpose.
– Andrés E. Caicedo
2 days ago
1
It would be much simpler to just define $f:[0,1]toBbb R$ by $f(x)=sqrt{x}.$ There is no need for a piecewise definition.
– Cameron Buie
2 days ago
1
Nice proof, but you forgot to mention the question. I assume the question was: if $f$ is continuous, then prove that there exists $K$ such that $|f(x) - f(y)| le K |x - y|$ for all $x, y$, or else find a counterexample $f$.
– 6005
2 days ago
Also, $f$ is not differentiable at $0$. So you should say that $f|_{(0,1)}$ is differentiable but the derivative is unbounded, thus a constant $K$ cannot exist for $f|_{(0,1)}$, thus a constant $K$ cannot exist for $f$ either.
– 6005
2 days ago
related
– Omnomnomnom
2 days ago