Inequality. ${{sqrt{a}+sqrt{b}+sqrt{c}} over {2}} ge {{1} over {sqrt{a}}} + {{1} over {sqrt{b}}} + {{1} over...
$begingroup$
Question. If ${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2$ and $a$, $b$, $c$ are all positive real numbers, prove that
$${{sqrt{a}+sqrt{b}+sqrt{c}} over {2}} ge {{1} over {sqrt{a}}} + {{1} over {sqrt{b}}} + {{1} over {sqrt{c}}}$$
My approach. If we let
$$x:=frac{1}{1+a}, y:=frac{1}{1+b}, z:=frac{1}{1+c}$$
Then we can know that
$${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2 Leftrightarrow abc=a+b+c+2 Leftrightarrow x+y+z=1$$ (By definition of x, y, z)
And,
$$a=frac{1}{x}-1=frac{1-x}{x}=frac{y+z}{x} (because x+y+z=1)$$
$$therefore (a, b, c)=(frac{y+z}{x}, frac{z+x}{y}, frac{x+y}{z})$$
T.S. $$sum_{cyc}frac{sqrt{a}}{2}>sum_{cyc}frac{1}{sqrt{a}}$$
$$ Leftrightarrow sum_{cyc}(sqrt{a}-frac{2}{sqrt{a}}) ge 0$$
$$ Leftrightarrow sum_{cyc}(sqrt{frac{y+z}{x}}-2sqrt{frac{x}{y+z}}) ge 0$$
$$ Leftrightarrow sum_{cyc}frac{(y-x)+(z-x)}{sqrt{x(y+z)}}ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)(frac{1}{sqrt{y(z+x)}}-frac{1}{sqrt{x(y+z)}})ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)frac{sqrt{x(y+z)}-sqrt{y(z+x)}}{sqrt{xy(x+z)(y+z)}} ge 0$$
But I don't know the next stage.
What should I do?
inequality radicals substitution sos
$endgroup$
add a comment |
$begingroup$
Question. If ${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2$ and $a$, $b$, $c$ are all positive real numbers, prove that
$${{sqrt{a}+sqrt{b}+sqrt{c}} over {2}} ge {{1} over {sqrt{a}}} + {{1} over {sqrt{b}}} + {{1} over {sqrt{c}}}$$
My approach. If we let
$$x:=frac{1}{1+a}, y:=frac{1}{1+b}, z:=frac{1}{1+c}$$
Then we can know that
$${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2 Leftrightarrow abc=a+b+c+2 Leftrightarrow x+y+z=1$$ (By definition of x, y, z)
And,
$$a=frac{1}{x}-1=frac{1-x}{x}=frac{y+z}{x} (because x+y+z=1)$$
$$therefore (a, b, c)=(frac{y+z}{x}, frac{z+x}{y}, frac{x+y}{z})$$
T.S. $$sum_{cyc}frac{sqrt{a}}{2}>sum_{cyc}frac{1}{sqrt{a}}$$
$$ Leftrightarrow sum_{cyc}(sqrt{a}-frac{2}{sqrt{a}}) ge 0$$
$$ Leftrightarrow sum_{cyc}(sqrt{frac{y+z}{x}}-2sqrt{frac{x}{y+z}}) ge 0$$
$$ Leftrightarrow sum_{cyc}frac{(y-x)+(z-x)}{sqrt{x(y+z)}}ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)(frac{1}{sqrt{y(z+x)}}-frac{1}{sqrt{x(y+z)}})ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)frac{sqrt{x(y+z)}-sqrt{y(z+x)}}{sqrt{xy(x+z)(y+z)}} ge 0$$
But I don't know the next stage.
What should I do?
inequality radicals substitution sos
$endgroup$
add a comment |
$begingroup$
Question. If ${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2$ and $a$, $b$, $c$ are all positive real numbers, prove that
$${{sqrt{a}+sqrt{b}+sqrt{c}} over {2}} ge {{1} over {sqrt{a}}} + {{1} over {sqrt{b}}} + {{1} over {sqrt{c}}}$$
My approach. If we let
$$x:=frac{1}{1+a}, y:=frac{1}{1+b}, z:=frac{1}{1+c}$$
Then we can know that
$${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2 Leftrightarrow abc=a+b+c+2 Leftrightarrow x+y+z=1$$ (By definition of x, y, z)
And,
$$a=frac{1}{x}-1=frac{1-x}{x}=frac{y+z}{x} (because x+y+z=1)$$
$$therefore (a, b, c)=(frac{y+z}{x}, frac{z+x}{y}, frac{x+y}{z})$$
T.S. $$sum_{cyc}frac{sqrt{a}}{2}>sum_{cyc}frac{1}{sqrt{a}}$$
$$ Leftrightarrow sum_{cyc}(sqrt{a}-frac{2}{sqrt{a}}) ge 0$$
$$ Leftrightarrow sum_{cyc}(sqrt{frac{y+z}{x}}-2sqrt{frac{x}{y+z}}) ge 0$$
$$ Leftrightarrow sum_{cyc}frac{(y-x)+(z-x)}{sqrt{x(y+z)}}ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)(frac{1}{sqrt{y(z+x)}}-frac{1}{sqrt{x(y+z)}})ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)frac{sqrt{x(y+z)}-sqrt{y(z+x)}}{sqrt{xy(x+z)(y+z)}} ge 0$$
But I don't know the next stage.
What should I do?
inequality radicals substitution sos
$endgroup$
Question. If ${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2$ and $a$, $b$, $c$ are all positive real numbers, prove that
$${{sqrt{a}+sqrt{b}+sqrt{c}} over {2}} ge {{1} over {sqrt{a}}} + {{1} over {sqrt{b}}} + {{1} over {sqrt{c}}}$$
My approach. If we let
$$x:=frac{1}{1+a}, y:=frac{1}{1+b}, z:=frac{1}{1+c}$$
Then we can know that
$${{a} over {1+a}}+{{b} over {1+b}}+{{c} over {1+c}}=2 Leftrightarrow abc=a+b+c+2 Leftrightarrow x+y+z=1$$ (By definition of x, y, z)
And,
$$a=frac{1}{x}-1=frac{1-x}{x}=frac{y+z}{x} (because x+y+z=1)$$
$$therefore (a, b, c)=(frac{y+z}{x}, frac{z+x}{y}, frac{x+y}{z})$$
T.S. $$sum_{cyc}frac{sqrt{a}}{2}>sum_{cyc}frac{1}{sqrt{a}}$$
$$ Leftrightarrow sum_{cyc}(sqrt{a}-frac{2}{sqrt{a}}) ge 0$$
$$ Leftrightarrow sum_{cyc}(sqrt{frac{y+z}{x}}-2sqrt{frac{x}{y+z}}) ge 0$$
$$ Leftrightarrow sum_{cyc}frac{(y-x)+(z-x)}{sqrt{x(y+z)}}ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)(frac{1}{sqrt{y(z+x)}}-frac{1}{sqrt{x(y+z)}})ge 0$$
$$ Leftrightarrow sum_{cyc}(x-y)frac{sqrt{x(y+z)}-sqrt{y(z+x)}}{sqrt{xy(x+z)(y+z)}} ge 0$$
But I don't know the next stage.
What should I do?
inequality radicals substitution sos
inequality radicals substitution sos
edited Jan 25 at 5:37
Michael Rozenberg
107k1895199
107k1895199
asked Jan 25 at 2:43
coding1101coding1101
1024
1024
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Now, use $$sqrt{x(y+z)}-sqrt{y(x+z)}=frac{x(y+z)-y(x+z)}{sqrt{x(y+z)}+sqrt{y(x+z)}}=frac{z(x-y)}{sqrt{x(y+z)}+sqrt{y(x+z)}}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086636%2finequality-sqrta-sqrtb-sqrtc-over-2-ge-1-over-sqrta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Now, use $$sqrt{x(y+z)}-sqrt{y(x+z)}=frac{x(y+z)-y(x+z)}{sqrt{x(y+z)}+sqrt{y(x+z)}}=frac{z(x-y)}{sqrt{x(y+z)}+sqrt{y(x+z)}}.$$
$endgroup$
add a comment |
$begingroup$
Now, use $$sqrt{x(y+z)}-sqrt{y(x+z)}=frac{x(y+z)-y(x+z)}{sqrt{x(y+z)}+sqrt{y(x+z)}}=frac{z(x-y)}{sqrt{x(y+z)}+sqrt{y(x+z)}}.$$
$endgroup$
add a comment |
$begingroup$
Now, use $$sqrt{x(y+z)}-sqrt{y(x+z)}=frac{x(y+z)-y(x+z)}{sqrt{x(y+z)}+sqrt{y(x+z)}}=frac{z(x-y)}{sqrt{x(y+z)}+sqrt{y(x+z)}}.$$
$endgroup$
Now, use $$sqrt{x(y+z)}-sqrt{y(x+z)}=frac{x(y+z)-y(x+z)}{sqrt{x(y+z)}+sqrt{y(x+z)}}=frac{z(x-y)}{sqrt{x(y+z)}+sqrt{y(x+z)}}.$$
answered Jan 25 at 5:24
Michael RozenbergMichael Rozenberg
107k1895199
107k1895199
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086636%2finequality-sqrta-sqrtb-sqrtc-over-2-ge-1-over-sqrta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown