How to do $arcsin(1/2)$ by hand?
$begingroup$
Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.
Thanks!
calculus
$endgroup$
add a comment |
$begingroup$
Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.
Thanks!
calculus
$endgroup$
2
$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38
2
$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55
$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52
1
$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26
$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22
add a comment |
$begingroup$
Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.
Thanks!
calculus
$endgroup$
Can I get help on how I can calculate this without a calculator? I know it's the inverse of $sin(1/2)$, but I'm still a little confused on how I get $pi / 2$ from this.
Thanks!
calculus
calculus
edited Jan 23 at 6:47
Ali
1,9832520
1,9832520
asked Jan 23 at 5:33
mingming
3886
3886
2
$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38
2
$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55
$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52
1
$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26
$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22
add a comment |
2
$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38
2
$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55
$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52
1
$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26
$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22
2
2
$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38
$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38
2
2
$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55
$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55
$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52
$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52
1
1
$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26
$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26
$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22
$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.
$endgroup$
add a comment |
$begingroup$
$sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$
Thus, $arcsinfrac{1}{2}=30^{circ}.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084121%2fhow-to-do-arcsin1-2-by-hand%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.
$endgroup$
add a comment |
$begingroup$
Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.
$endgroup$
add a comment |
$begingroup$
Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.
$endgroup$
Consider an equilateral triangle if side length $2$. An altitude cuts one of the $pi/3$ angles into two copies of $pi/6$, in hypotenuse-$2$ right-angled triangles with opposite $1$. Thus $pi/6=arcsin 1/2$.
answered Jan 23 at 7:29
J.G.J.G.
28.4k22845
28.4k22845
add a comment |
add a comment |
$begingroup$
$sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$
Thus, $arcsinfrac{1}{2}=30^{circ}.$
$endgroup$
add a comment |
$begingroup$
$sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$
Thus, $arcsinfrac{1}{2}=30^{circ}.$
$endgroup$
add a comment |
$begingroup$
$sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$
Thus, $arcsinfrac{1}{2}=30^{circ}.$
$endgroup$
$sin30^{circ}=frac{1}{2}$ and for all $-1leq xleq 1$ we have $-90^{circ}leqarcsin xleq90^{circ}.$
Thus, $arcsinfrac{1}{2}=30^{circ}.$
answered Jan 23 at 7:24
Michael RozenbergMichael Rozenberg
106k1893198
106k1893198
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084121%2fhow-to-do-arcsin1-2-by-hand%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
But $sin pi/2$ is $1,$ not $1/2.$
$endgroup$
– coffeemath
Jan 23 at 5:38
2
$begingroup$
Draw a triangle and use the definition of the sine function.
$endgroup$
– John Douma
Jan 23 at 5:55
$begingroup$
When you say the inverse of $sin(1/2)$, are you implying that $arcsin(1/2) = 1/sin(1/2)$?
$endgroup$
– eyeballfrog
Jan 23 at 6:52
1
$begingroup$
@eyeballfrog I think a functional inverse was intended, not a reciprocal.
$endgroup$
– J.G.
Jan 23 at 7:26
$begingroup$
That's right @J.G.
$endgroup$
– ming
Jan 23 at 20:22