An identity on $small{}_pF_qleft(left.begin{array}{c} a_1+1,a_2+1,dots ,a_p+1\ b_1+1,b_2+1,dots...












7












$begingroup$


I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,



$$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$



$$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$



It seems,



$$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$



Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.





Question: In general, let



$$p=q+1\c_n = a_n+1\d_n = b_n+1$$



where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,



$$
{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
{}
\
$$



(Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)










share|cite|improve this question











$endgroup$

















    7












    $begingroup$


    I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,



    $$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$



    $$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$



    It seems,



    $$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$



    Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.





    Question: In general, let



    $$p=q+1\c_n = a_n+1\d_n = b_n+1$$



    where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,



    $$
    {}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
    {}
    \
    $$



    (Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)










    share|cite|improve this question











    $endgroup$















      7












      7








      7


      2



      $begingroup$


      I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,



      $$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$



      $$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$



      It seems,



      $$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$



      Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.





      Question: In general, let



      $$p=q+1\c_n = a_n+1\d_n = b_n+1$$



      where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,



      $$
      {}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
      {}
      \
      $$



      (Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)










      share|cite|improve this question











      $endgroup$




      I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,



      $$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$



      $$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$



      It seems,



      $$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$



      Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.





      Question: In general, let



      $$p=q+1\c_n = a_n+1\d_n = b_n+1$$



      where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,



      $$
      {}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
      {}
      \
      $$



      (Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)







      derivatives hypergeometric-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 24 at 2:23







      Tito Piezas III

















      asked Jan 23 at 6:14









      Tito Piezas IIITito Piezas III

      27.6k367176




      27.6k367176






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          We first use the differentiation formula for the generalized hypergeometric function
          begin{equation}
          frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{equation}

          Then, the LHS of the proposed identity can be written as
          begin{equation}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
          end{equation}

          To differentiate the hypergeometric function, we use the Euler's integral transform
          begin{align}
          & _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
          end{align}

          Here $b_q=a_p+1$, then
          begin{align}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
          a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
          &=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
          end{align}

          Then
          begin{align}
          frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{align}

          Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
            $endgroup$
            – Tito Piezas III
            Jan 24 at 2:27










          • $begingroup$
            You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
            $endgroup$
            – Paul Enta
            Jan 24 at 9:01











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084146%2fan-identity-on-small-pf-q-left-left-beginarrayc-a-11-a-21-dots-a-p%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          We first use the differentiation formula for the generalized hypergeometric function
          begin{equation}
          frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{equation}

          Then, the LHS of the proposed identity can be written as
          begin{equation}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
          end{equation}

          To differentiate the hypergeometric function, we use the Euler's integral transform
          begin{align}
          & _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
          end{align}

          Here $b_q=a_p+1$, then
          begin{align}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
          a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
          &=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
          end{align}

          Then
          begin{align}
          frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{align}

          Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
            $endgroup$
            – Tito Piezas III
            Jan 24 at 2:27










          • $begingroup$
            You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
            $endgroup$
            – Paul Enta
            Jan 24 at 9:01
















          3












          $begingroup$

          We first use the differentiation formula for the generalized hypergeometric function
          begin{equation}
          frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{equation}

          Then, the LHS of the proposed identity can be written as
          begin{equation}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
          end{equation}

          To differentiate the hypergeometric function, we use the Euler's integral transform
          begin{align}
          & _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
          end{align}

          Here $b_q=a_p+1$, then
          begin{align}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
          a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
          &=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
          end{align}

          Then
          begin{align}
          frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{align}

          Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
            $endgroup$
            – Tito Piezas III
            Jan 24 at 2:27










          • $begingroup$
            You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
            $endgroup$
            – Paul Enta
            Jan 24 at 9:01














          3












          3








          3





          $begingroup$

          We first use the differentiation formula for the generalized hypergeometric function
          begin{equation}
          frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{equation}

          Then, the LHS of the proposed identity can be written as
          begin{equation}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
          end{equation}

          To differentiate the hypergeometric function, we use the Euler's integral transform
          begin{align}
          & _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
          end{align}

          Here $b_q=a_p+1$, then
          begin{align}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
          a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
          &=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
          end{align}

          Then
          begin{align}
          frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{align}

          Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.






          share|cite|improve this answer











          $endgroup$



          We first use the differentiation formula for the generalized hypergeometric function
          begin{equation}
          frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{equation}

          Then, the LHS of the proposed identity can be written as
          begin{equation}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
          end{equation}

          To differentiate the hypergeometric function, we use the Euler's integral transform
          begin{align}
          & _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
          end{align}

          Here $b_q=a_p+1$, then
          begin{align}
          _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
          a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
          &=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
          end{align}

          Then
          begin{align}
          frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
          &=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
          end{align}

          Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 23 at 23:11

























          answered Jan 23 at 23:05









          Paul EntaPaul Enta

          5,18111334




          5,18111334












          • $begingroup$
            Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
            $endgroup$
            – Tito Piezas III
            Jan 24 at 2:27










          • $begingroup$
            You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
            $endgroup$
            – Paul Enta
            Jan 24 at 9:01


















          • $begingroup$
            Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
            $endgroup$
            – Tito Piezas III
            Jan 24 at 2:27










          • $begingroup$
            You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
            $endgroup$
            – Paul Enta
            Jan 24 at 9:01
















          $begingroup$
          Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
          $endgroup$
          – Tito Piezas III
          Jan 24 at 2:27




          $begingroup$
          Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
          $endgroup$
          – Tito Piezas III
          Jan 24 at 2:27












          $begingroup$
          You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
          $endgroup$
          – Paul Enta
          Jan 24 at 9:01




          $begingroup$
          You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
          $endgroup$
          – Paul Enta
          Jan 24 at 9:01


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084146%2fan-identity-on-small-pf-q-left-left-beginarrayc-a-11-a-21-dots-a-p%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?