An identity on $small{}_pF_qleft(left.begin{array}{c} a_1+1,a_2+1,dots ,a_p+1\ b_1+1,b_2+1,dots...
$begingroup$
I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,
$$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$
$$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$
It seems,
$$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$
Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.
Question: In general, let
$$p=q+1\c_n = a_n+1\d_n = b_n+1$$
where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,
$$
{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
{}
\
$$
(Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)
derivatives hypergeometric-function
$endgroup$
add a comment |
$begingroup$
I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,
$$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$
$$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$
It seems,
$$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$
Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.
Question: In general, let
$$p=q+1\c_n = a_n+1\d_n = b_n+1$$
where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,
$$
{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
{}
\
$$
(Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)
derivatives hypergeometric-function
$endgroup$
add a comment |
$begingroup$
I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,
$$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$
$$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$
It seems,
$$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$
Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.
Question: In general, let
$$p=q+1\c_n = a_n+1\d_n = b_n+1$$
where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,
$$
{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
{}
\
$$
(Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)
derivatives hypergeometric-function
$endgroup$
I stumbled upon this relation while trying to answer this post. I was trying to find a relation between the two generalized hypergeometric functions,
$$A=,_3F_2left(color{blue}{tfrac12,tfrac12},tfrac12;color{red}{tfrac32,tfrac32};color{fuchsia}{tfrac12}right)$$
$$B=,_3F_2left(tfrac32,tfrac32,tfrac32;tfrac52,tfrac52;tfrac12right)$$
It seems,
$$A+tfrac1{18}B = ,_2F_1left(tfrac12,tfrac12;tfrac32;tfrac12right) =frac{pi}{2sqrt2}$$
Note that from a $_3F_2$, the sum reduces to a $_2F_1$, and $tfrac1{18}= color{blue}{tfrac12tfrac12} color{red}{tfrac23tfrac23} color{fuchsia}{tfrac12} $.
Question: In general, let
$$p=q+1\c_n = a_n+1\d_n = b_n+1$$
where $a_n, b_n$ are arbitrary but the last pair must satisty $a_p+1=b_q$. Is it true that,
$$
{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)\={}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)\
{}
\
$$
(Note: The pair $a_p,b_q$ disappears in the $text{RHS}$.)
derivatives hypergeometric-function
derivatives hypergeometric-function
edited Jan 24 at 2:23
Tito Piezas III
asked Jan 23 at 6:14
Tito Piezas IIITito Piezas III
27.6k367176
27.6k367176
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We first use the differentiation formula for the generalized hypergeometric function
begin{equation}
frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{equation}
Then, the LHS of the proposed identity can be written as
begin{equation}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
end{equation}
To differentiate the hypergeometric function, we use the Euler's integral transform
begin{align}
& _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
end{align}
Here $b_q=a_p+1$, then
begin{align}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
&=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
end{align}
Then
begin{align}
frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{align}
Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.
$endgroup$
$begingroup$
Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
$endgroup$
– Tito Piezas III
Jan 24 at 2:27
$begingroup$
You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
$endgroup$
– Paul Enta
Jan 24 at 9:01
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084146%2fan-identity-on-small-pf-q-left-left-beginarrayc-a-11-a-21-dots-a-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We first use the differentiation formula for the generalized hypergeometric function
begin{equation}
frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{equation}
Then, the LHS of the proposed identity can be written as
begin{equation}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
end{equation}
To differentiate the hypergeometric function, we use the Euler's integral transform
begin{align}
& _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
end{align}
Here $b_q=a_p+1$, then
begin{align}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
&=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
end{align}
Then
begin{align}
frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{align}
Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.
$endgroup$
$begingroup$
Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
$endgroup$
– Tito Piezas III
Jan 24 at 2:27
$begingroup$
You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
$endgroup$
– Paul Enta
Jan 24 at 9:01
add a comment |
$begingroup$
We first use the differentiation formula for the generalized hypergeometric function
begin{equation}
frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{equation}
Then, the LHS of the proposed identity can be written as
begin{equation}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
end{equation}
To differentiate the hypergeometric function, we use the Euler's integral transform
begin{align}
& _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
end{align}
Here $b_q=a_p+1$, then
begin{align}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
&=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
end{align}
Then
begin{align}
frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{align}
Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.
$endgroup$
$begingroup$
Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
$endgroup$
– Tito Piezas III
Jan 24 at 2:27
$begingroup$
You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
$endgroup$
– Paul Enta
Jan 24 at 9:01
add a comment |
$begingroup$
We first use the differentiation formula for the generalized hypergeometric function
begin{equation}
frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{equation}
Then, the LHS of the proposed identity can be written as
begin{equation}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
end{equation}
To differentiate the hypergeometric function, we use the Euler's integral transform
begin{align}
& _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
end{align}
Here $b_q=a_p+1$, then
begin{align}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
&=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
end{align}
Then
begin{align}
frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{align}
Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.
$endgroup$
We first use the differentiation formula for the generalized hypergeometric function
begin{equation}
frac{a_1a_2dots a_{p}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=frac{d}{dz}{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{equation}
Then, the LHS of the proposed identity can be written as
begin{equation}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)+z,frac{a_1a_2dots a_{p-1}}{b_1b_2dots b_q}{}_pF_qleft(left.begin{array}{c} c_1,c_2,dots ,c_p\ d_1,d_2,dots ,d_q end{array}right| zright)=left( 1+frac{z}{a_p}frac{d}{dz} right){} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)tag{1}label{eq1}
end{equation}
To differentiate the hypergeometric function, we use the Euler's integral transform
begin{align}
& _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{Gamma(b_q)}{Gamma(a_p)Gamma(b_q-b_p)} int_0^1t^{a_p-1}left( 1-t right)^{b_q-a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| tright),dt
end{align}
Here $b_q=a_p+1$, then
begin{align}
_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)&=
a_p int_0^1t^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| ztright),dt\
&=frac{a_p}{z^{a_p}} int_0^zu^{a_p-1}{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| uright),du
end{align}
Then
begin{align}
frac{d}{dz}&,{} _pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)\
&=frac{a_p}{z},{}_{p-1}F_{q-1}left(left.begin{array}{c} a_1,a_2,dots ,a_{p-1}\ b_1,b_2,dots ,b_{q-1} end{array}right| zright)-frac{a_p}{z} ,{}_pF_qleft(left.begin{array}{c} a_1,a_2,dots ,a_p\ b_1,b_2,dots ,b_q end{array}right| zright)
end{align}
Plugging this expression in eq. eqref{eq1} we find theRHS of the proposed identity.
edited Jan 23 at 23:11
answered Jan 23 at 23:05
Paul EntaPaul Enta
5,18111334
5,18111334
$begingroup$
Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
$endgroup$
– Tito Piezas III
Jan 24 at 2:27
$begingroup$
You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
$endgroup$
– Paul Enta
Jan 24 at 9:01
add a comment |
$begingroup$
Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
$endgroup$
– Tito Piezas III
Jan 24 at 2:27
$begingroup$
You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
$endgroup$
– Paul Enta
Jan 24 at 9:01
$begingroup$
Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
$endgroup$
– Tito Piezas III
Jan 24 at 2:27
$begingroup$
Thanks! From the $c_n = a_n+1$ etc, I knew it had to involve differentiation. While forming the identity, I fortunately noticed the condition $b_q=a_p+1$ and wondered why it was necessary.
$endgroup$
– Tito Piezas III
Jan 24 at 2:27
$begingroup$
You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
$endgroup$
– Paul Enta
Jan 24 at 9:01
$begingroup$
You're welcome. The proof does not make use of the assumption $p=q+1$, I think it can be removed.
$endgroup$
– Paul Enta
Jan 24 at 9:01
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084146%2fan-identity-on-small-pf-q-left-left-beginarrayc-a-11-a-21-dots-a-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown