Applying Ito's formula to $D^x(t)=(partial/partial x)S(t)$












1












$begingroup$


Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.




Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
    $endgroup$
    – AddSup
    Jan 23 at 10:43










  • $begingroup$
    In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
    $endgroup$
    – AddSup
    Jan 23 at 17:30












  • $begingroup$
    @AddSup I want to find $dD^x$
    $endgroup$
    – Heisenberg
    Jan 24 at 19:32










  • $begingroup$
    I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
    $endgroup$
    – AddSup
    Jan 25 at 4:29
















1












$begingroup$


Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.




Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
    $endgroup$
    – AddSup
    Jan 23 at 10:43










  • $begingroup$
    In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
    $endgroup$
    – AddSup
    Jan 23 at 17:30












  • $begingroup$
    @AddSup I want to find $dD^x$
    $endgroup$
    – Heisenberg
    Jan 24 at 19:32










  • $begingroup$
    I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
    $endgroup$
    – AddSup
    Jan 25 at 4:29














1












1








1





$begingroup$


Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.




Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!










share|cite|improve this question











$endgroup$




Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.




Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!







stochastic-calculus brownian-motion finance






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 5:08







Heisenberg

















asked Jan 23 at 4:40









HeisenbergHeisenberg

1,3131741




1,3131741












  • $begingroup$
    See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
    $endgroup$
    – AddSup
    Jan 23 at 10:43










  • $begingroup$
    In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
    $endgroup$
    – AddSup
    Jan 23 at 17:30












  • $begingroup$
    @AddSup I want to find $dD^x$
    $endgroup$
    – Heisenberg
    Jan 24 at 19:32










  • $begingroup$
    I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
    $endgroup$
    – AddSup
    Jan 25 at 4:29


















  • $begingroup$
    See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
    $endgroup$
    – AddSup
    Jan 23 at 10:43










  • $begingroup$
    In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
    $endgroup$
    – AddSup
    Jan 23 at 17:30












  • $begingroup$
    @AddSup I want to find $dD^x$
    $endgroup$
    – Heisenberg
    Jan 24 at 19:32










  • $begingroup$
    I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
    $endgroup$
    – AddSup
    Jan 25 at 4:29
















$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43




$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43












$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30






$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30














$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32




$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32












$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29




$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29










1 Answer
1






active

oldest

votes


















1





+100







$begingroup$

For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
$$
frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
$$

This is not a magic; it is just as if
$$
frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
$$

for some differentiable function $f=f(x,t)$.



Therefore, act $partial/partial x$ on both sides of
$$
{rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$

and we obtain
begin{align}
{rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
&=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
&=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
end{align}



Note that
begin{align}
&gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
&=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
end{align}

Hence, we eventually obtain
$$
{rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$

as is desired.



In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084090%2fapplying-itos-formula-to-dxt-partial-partial-xst%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1





    +100







    $begingroup$

    For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
    $$
    frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
    $$

    This is not a magic; it is just as if
    $$
    frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
    $$

    for some differentiable function $f=f(x,t)$.



    Therefore, act $partial/partial x$ on both sides of
    $$
    {rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
    $$

    and we obtain
    begin{align}
    {rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
    &=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
    &=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
    &+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
    &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
    &+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
    &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
    &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
    &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
    &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
    &=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
    end{align}



    Note that
    begin{align}
    &gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
    &=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
    &=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
    &=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
    end{align}

    Hence, we eventually obtain
    $$
    {rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
    $$

    as is desired.



    In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.






    share|cite|improve this answer









    $endgroup$


















      1





      +100







      $begingroup$

      For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
      $$
      frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
      $$

      This is not a magic; it is just as if
      $$
      frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
      $$

      for some differentiable function $f=f(x,t)$.



      Therefore, act $partial/partial x$ on both sides of
      $$
      {rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
      $$

      and we obtain
      begin{align}
      {rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
      &=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
      &=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
      &+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
      &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
      &+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
      &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
      &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
      &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
      &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
      &=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
      end{align}



      Note that
      begin{align}
      &gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
      &=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
      &=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
      &=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
      end{align}

      Hence, we eventually obtain
      $$
      {rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
      $$

      as is desired.



      In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.






      share|cite|improve this answer









      $endgroup$
















        1





        +100







        1





        +100



        1




        +100



        $begingroup$

        For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
        $$
        frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
        $$

        This is not a magic; it is just as if
        $$
        frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
        $$

        for some differentiable function $f=f(x,t)$.



        Therefore, act $partial/partial x$ on both sides of
        $$
        {rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
        $$

        and we obtain
        begin{align}
        {rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
        &=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
        &=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
        &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
        &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
        &=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
        end{align}



        Note that
        begin{align}
        &gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
        &=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
        &=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
        &=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
        end{align}

        Hence, we eventually obtain
        $$
        {rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
        $$

        as is desired.



        In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.






        share|cite|improve this answer









        $endgroup$



        For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
        $$
        frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
        $$

        This is not a magic; it is just as if
        $$
        frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
        $$

        for some differentiable function $f=f(x,t)$.



        Therefore, act $partial/partial x$ on both sides of
        $$
        {rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
        $$

        and we obtain
        begin{align}
        {rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
        &=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
        &=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
        &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
        &=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
        &+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
        &=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
        end{align}



        Note that
        begin{align}
        &gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
        &=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
        &=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
        &=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
        end{align}

        Hence, we eventually obtain
        $$
        {rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
        $$

        as is desired.



        In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 25 at 18:31









        hypernovahypernova

        4,834414




        4,834414






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084090%2fapplying-itos-formula-to-dxt-partial-partial-xst%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?