Applying Ito's formula to $D^x(t)=(partial/partial x)S(t)$
$begingroup$
Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.
Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!
stochastic-calculus brownian-motion finance
$endgroup$
add a comment |
$begingroup$
Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.
Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!
stochastic-calculus brownian-motion finance
$endgroup$
$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43
$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30
$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32
$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29
add a comment |
$begingroup$
Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.
Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!
stochastic-calculus brownian-motion finance
$endgroup$
Let $gamma:[0,T]times (0,infty)to mathbb{R}$ be continuous, bounded above, $(partial/partial s [gamma(t,s)])$ is continuous in $(s,t)$. Consider the following process $$dS_{gamma}^x(t)=S^x_{gamma}(t)[r(t)dt+gamma(t,S^x_{gamma}(t))dW(t)]$$ where $W(t)$ is a one dimensional Brownian motion and $r(t)$ is an adapted process and $S^x_{gamma}(0)=x$.
Now define the process $D^x(t)=(partial/partial x)S^x_{gamma}(t)$. And this apparently satisfies $$dD^x(t)=D^x(t)big[r(t)dt+frac{partial}{partial s}rho(t,S^x_{gamma}(t))dW(t)big]rightarrow(1)$$ where $rho(t,s):=sgamma(t,s). $ I am not quite sure how equation (1) can be derived since $gamma$ depends on $S^x_{gamma}$. Maybe the idea is to apply Ito's formula to $D^x(t)$ by defining a function $f(t,s):=(partial/partial x)s $ and then the ito rule gives us $df=f_tdt+f_sdS^x_{gamma}(t)+frac{1}{2}f_{ss}dS^x_{gamma}(t)dS^x_{gamma}(t)$. I am not sure if what I am doing is even slightly correct. Any help is appreciated!
stochastic-calculus brownian-motion finance
stochastic-calculus brownian-motion finance
edited Jan 25 at 5:08
Heisenberg
asked Jan 23 at 4:40
HeisenbergHeisenberg
1,3131741
1,3131741
$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43
$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30
$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32
$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29
add a comment |
$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43
$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30
$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32
$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29
$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43
$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43
$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30
$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30
$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32
$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32
$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29
$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
$$
frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
$$
This is not a magic; it is just as if
$$
frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
$$
for some differentiable function $f=f(x,t)$.
Therefore, act $partial/partial x$ on both sides of
$$
{rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
and we obtain
begin{align}
{rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
&=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
&=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
end{align}
Note that
begin{align}
&gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
&=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
end{align}
Hence, we eventually obtain
$$
{rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
as is desired.
In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084090%2fapplying-itos-formula-to-dxt-partial-partial-xst%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
$$
frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
$$
This is not a magic; it is just as if
$$
frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
$$
for some differentiable function $f=f(x,t)$.
Therefore, act $partial/partial x$ on both sides of
$$
{rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
and we obtain
begin{align}
{rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
&=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
&=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
end{align}
Note that
begin{align}
&gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
&=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
end{align}
Hence, we eventually obtain
$$
{rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
as is desired.
In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.
$endgroup$
add a comment |
$begingroup$
For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
$$
frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
$$
This is not a magic; it is just as if
$$
frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
$$
for some differentiable function $f=f(x,t)$.
Therefore, act $partial/partial x$ on both sides of
$$
{rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
and we obtain
begin{align}
{rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
&=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
&=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
end{align}
Note that
begin{align}
&gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
&=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
end{align}
Hence, we eventually obtain
$$
{rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
as is desired.
In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.
$endgroup$
add a comment |
$begingroup$
For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
$$
frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
$$
This is not a magic; it is just as if
$$
frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
$$
for some differentiable function $f=f(x,t)$.
Therefore, act $partial/partial x$ on both sides of
$$
{rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
and we obtain
begin{align}
{rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
&=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
&=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
end{align}
Note that
begin{align}
&gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
&=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
end{align}
Hence, we eventually obtain
$$
{rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
as is desired.
In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.
$endgroup$
For your Ito process $S_{gamma}^x(t)$, we focus on its time-differentiation as we write ${rm d}S_{gamma}^x(t)$. Since $x$ is an auxiliary parameter independent from $t$, we have that ${rm d}$ and $partial/partial x$ commute with each other, i.e.,
$$
frac{partial}{partial x}{rm d}S_{gamma}^x(t)={rm d}left(frac{partial}{partial x}S_{gamma}^x(t)right)={rm d}D^x(t).
$$
This is not a magic; it is just as if
$$
frac{partial}{partial x}left(frac{partial}{partial t}f(x,t)right)=frac{partial}{partial t}left(frac{partial}{partial x}f(x,t)right)
$$
for some differentiable function $f=f(x,t)$.
Therefore, act $partial/partial x$ on both sides of
$$
{rm d}S_{gamma}^x(t)=S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
and we obtain
begin{align}
{rm d}D^x(t)&=frac{partial}{partial x}{rm d}S_{gamma}^x(t)\
&=frac{partial}{partial x}left(S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)right)\
&=frac{partial}{partial x}S_{gamma}^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t)frac{partial}{partial x}left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partial}{partial x}gamma(t,S_{gamma}^x(t)),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))frac{partial}{partial x}S_{gamma}^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+gamma(t,S_{gamma}^x(t)),{rm d}W(t)right)\
&+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t)),D^x(t),{rm d}W(t)\
&=D^x(t)left(r(t),{rm d}t+left(gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))right){rm d}W(t)right).
end{align}
Note that
begin{align}
&gamma(t,S_{gamma}^x(t))+S_{gamma}^x(t),frac{partialgamma}{partial s}(t,S_{gamma}^x(t))\
&=left(gamma(t,s)+sfrac{partialgamma}{partial s}(t,s)right)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,s)bigg|_{s=S_{gamma}^x(t)}\
&=frac{partialrho}{partial s}(t,S_{gamma}^x(t)).
end{align}
Hence, we eventually obtain
$$
{rm d}D^x(t)=D^x(t)left(r(t),{rm d}t+frac{partialrho}{partial s}(t,S_{gamma}^x(t)),{rm d}W(t)right),
$$
as is desired.
In the above derivation, we merely use the commutativity between ${rm d}$ and $partial/partial x$; Ito's formula is not necessary here.
answered Jan 25 at 18:31
hypernovahypernova
4,834414
4,834414
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084090%2fapplying-itos-formula-to-dxt-partial-partial-xst%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See Equation (2.16) in p. 261 and the proof around it: books.google.com/…
$endgroup$
– AddSup
Jan 23 at 10:43
$begingroup$
In case you're just talking about how to compute the volatility, you just need to differentiate it: $frac{partial}{partial x}(S^xgamma(S^x))=D^xgamma(S^x)+S^xleft(frac{partial}{partial s}gamma(S^x)right)D^x=D^xleft(gamma(S^x)+S^xfrac{partial}{partial s}gamma(S^x)right)$.
$endgroup$
– AddSup
Jan 23 at 17:30
$begingroup$
@AddSup I want to find $dD^x$
$endgroup$
– Heisenberg
Jan 24 at 19:32
$begingroup$
I'm saying, the volatility of $dD^x$ is calculated as above, and the drift is calculated, of course, in the same manner: $frac{partial}{partial x}(S^xr)=D^xr$.
$endgroup$
– AddSup
Jan 25 at 4:29