How to understand whether two distinguished open sets are isomorphic












9












$begingroup$


Let $R=k[x_1,...,x_n]$ be the polynomial ring over an algebraically closed field $k$ and let $f,gin R$. Assume that $f$ and $g$ are irreducible. How can I understand whether $k[x_1,...,x_n,frac{1}{f}]$ and $k[x_1,...,x_n,frac{1}{g}]$ are isomorphic?



Alternatively, consider the open sets $D(f)={pinmathbb{A}^nmid f(p)neq 0}$ and $D(g)={pinmathbb{A}^nmid g(p)neq 0}$. Is there an easy way to deduce whether $D(f)cong D(g)$?



That amounts of checking $V(tf-1)cong V(tg-1)$ in $k[x_1,...,x_n,t]$ and I believe that this should not be an easy problem.










share|cite|improve this question









$endgroup$












  • $begingroup$
    I think the only way this can happen is if there is an isomorphism $phi:k[x_1,ldots, x_n]$ to itself such that $phi(f)=g$.
    $endgroup$
    – Mohan
    Jan 12 at 1:43












  • $begingroup$
    Some one-variable examples: $k[x,1/x] simeq k[x,1/x^2]$. But what about $k[x,1/f]$ and $k[x,1/g]$ when $f(x)=x(x-1)(x-2)$ and $g(x)=x(x-1)(x-3)$?
    $endgroup$
    – Matt F.
    Jan 15 at 14:48
















9












$begingroup$


Let $R=k[x_1,...,x_n]$ be the polynomial ring over an algebraically closed field $k$ and let $f,gin R$. Assume that $f$ and $g$ are irreducible. How can I understand whether $k[x_1,...,x_n,frac{1}{f}]$ and $k[x_1,...,x_n,frac{1}{g}]$ are isomorphic?



Alternatively, consider the open sets $D(f)={pinmathbb{A}^nmid f(p)neq 0}$ and $D(g)={pinmathbb{A}^nmid g(p)neq 0}$. Is there an easy way to deduce whether $D(f)cong D(g)$?



That amounts of checking $V(tf-1)cong V(tg-1)$ in $k[x_1,...,x_n,t]$ and I believe that this should not be an easy problem.










share|cite|improve this question









$endgroup$












  • $begingroup$
    I think the only way this can happen is if there is an isomorphism $phi:k[x_1,ldots, x_n]$ to itself such that $phi(f)=g$.
    $endgroup$
    – Mohan
    Jan 12 at 1:43












  • $begingroup$
    Some one-variable examples: $k[x,1/x] simeq k[x,1/x^2]$. But what about $k[x,1/f]$ and $k[x,1/g]$ when $f(x)=x(x-1)(x-2)$ and $g(x)=x(x-1)(x-3)$?
    $endgroup$
    – Matt F.
    Jan 15 at 14:48














9












9








9


0



$begingroup$


Let $R=k[x_1,...,x_n]$ be the polynomial ring over an algebraically closed field $k$ and let $f,gin R$. Assume that $f$ and $g$ are irreducible. How can I understand whether $k[x_1,...,x_n,frac{1}{f}]$ and $k[x_1,...,x_n,frac{1}{g}]$ are isomorphic?



Alternatively, consider the open sets $D(f)={pinmathbb{A}^nmid f(p)neq 0}$ and $D(g)={pinmathbb{A}^nmid g(p)neq 0}$. Is there an easy way to deduce whether $D(f)cong D(g)$?



That amounts of checking $V(tf-1)cong V(tg-1)$ in $k[x_1,...,x_n,t]$ and I believe that this should not be an easy problem.










share|cite|improve this question









$endgroup$




Let $R=k[x_1,...,x_n]$ be the polynomial ring over an algebraically closed field $k$ and let $f,gin R$. Assume that $f$ and $g$ are irreducible. How can I understand whether $k[x_1,...,x_n,frac{1}{f}]$ and $k[x_1,...,x_n,frac{1}{g}]$ are isomorphic?



Alternatively, consider the open sets $D(f)={pinmathbb{A}^nmid f(p)neq 0}$ and $D(g)={pinmathbb{A}^nmid g(p)neq 0}$. Is there an easy way to deduce whether $D(f)cong D(g)$?



That amounts of checking $V(tf-1)cong V(tg-1)$ in $k[x_1,...,x_n,t]$ and I believe that this should not be an easy problem.







algebraic-geometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 9 '18 at 12:01









LeventLevent

2,729925




2,729925












  • $begingroup$
    I think the only way this can happen is if there is an isomorphism $phi:k[x_1,ldots, x_n]$ to itself such that $phi(f)=g$.
    $endgroup$
    – Mohan
    Jan 12 at 1:43












  • $begingroup$
    Some one-variable examples: $k[x,1/x] simeq k[x,1/x^2]$. But what about $k[x,1/f]$ and $k[x,1/g]$ when $f(x)=x(x-1)(x-2)$ and $g(x)=x(x-1)(x-3)$?
    $endgroup$
    – Matt F.
    Jan 15 at 14:48


















  • $begingroup$
    I think the only way this can happen is if there is an isomorphism $phi:k[x_1,ldots, x_n]$ to itself such that $phi(f)=g$.
    $endgroup$
    – Mohan
    Jan 12 at 1:43












  • $begingroup$
    Some one-variable examples: $k[x,1/x] simeq k[x,1/x^2]$. But what about $k[x,1/f]$ and $k[x,1/g]$ when $f(x)=x(x-1)(x-2)$ and $g(x)=x(x-1)(x-3)$?
    $endgroup$
    – Matt F.
    Jan 15 at 14:48
















$begingroup$
I think the only way this can happen is if there is an isomorphism $phi:k[x_1,ldots, x_n]$ to itself such that $phi(f)=g$.
$endgroup$
– Mohan
Jan 12 at 1:43






$begingroup$
I think the only way this can happen is if there is an isomorphism $phi:k[x_1,ldots, x_n]$ to itself such that $phi(f)=g$.
$endgroup$
– Mohan
Jan 12 at 1:43














$begingroup$
Some one-variable examples: $k[x,1/x] simeq k[x,1/x^2]$. But what about $k[x,1/f]$ and $k[x,1/g]$ when $f(x)=x(x-1)(x-2)$ and $g(x)=x(x-1)(x-3)$?
$endgroup$
– Matt F.
Jan 15 at 14:48




$begingroup$
Some one-variable examples: $k[x,1/x] simeq k[x,1/x^2]$. But what about $k[x,1/f]$ and $k[x,1/g]$ when $f(x)=x(x-1)(x-2)$ and $g(x)=x(x-1)(x-3)$?
$endgroup$
– Matt F.
Jan 15 at 14:48










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2683729%2fhow-to-understand-whether-two-distinguished-open-sets-are-isomorphic%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2683729%2fhow-to-understand-whether-two-distinguished-open-sets-are-isomorphic%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?