Find $int_0^1frac{ln^2(1-x)}{x} dx$
$begingroup$
In solving $displaystyleint_0^frac{pi}{4}dfrac{ln(sin x)ln(cos x)}{sin xcos x} dx,$ I have found that this is equal to $dfrac{1}{16}displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx.$ WolframAlpha says that the desired value is $dfrac{zeta(3)}{8},$ so I suspect a conversion to a series is necessary.
How do I prove $displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx=displaystylesum_{n=1}^inftydfrac{2}{n^3}$?
Note that the above integral can also be given as $displaystyleint_0^1dfrac{ln^2x}{1-x} dx$, which I know is equal to $displaystylesum_{n=0}^infty x^nln^2x.$
Also for reference, here is a picture of my original work to get to this point.
calculus integration sequences-and-series definite-integrals
$endgroup$
|
show 3 more comments
$begingroup$
In solving $displaystyleint_0^frac{pi}{4}dfrac{ln(sin x)ln(cos x)}{sin xcos x} dx,$ I have found that this is equal to $dfrac{1}{16}displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx.$ WolframAlpha says that the desired value is $dfrac{zeta(3)}{8},$ so I suspect a conversion to a series is necessary.
How do I prove $displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx=displaystylesum_{n=1}^inftydfrac{2}{n^3}$?
Note that the above integral can also be given as $displaystyleint_0^1dfrac{ln^2x}{1-x} dx$, which I know is equal to $displaystylesum_{n=0}^infty x^nln^2x.$
Also for reference, here is a picture of my original work to get to this point.
calculus integration sequences-and-series definite-integrals
$endgroup$
$begingroup$
What's up with everyone usign displaystyle lately? We don't need that anywhere, especially in the title
$endgroup$
– Yuriy S
Aug 4 '16 at 21:01
$begingroup$
@You'reInMyEye That's just how I write integrals. Chalk it up to me not having a lot of experience on Math.SE and not knowing all of the minutiae that you all prefer. My apologies.
$endgroup$
– Arcturus
Aug 4 '16 at 21:09
$begingroup$
Eridan, that was nothing personal, more a comment for general public. I edited at least three displaystyle titles today. I'm not sure myself why it's not allowed, but I think it may cause some problems with browsing question and search
$endgroup$
– Yuriy S
Aug 4 '16 at 21:11
$begingroup$
@You'reInMyEye MSE strongly recommends ( in some documentation ) to avoid $texttt{displaystyle}$ in the title.
$endgroup$
– Felix Marin
Aug 4 '16 at 23:35
$begingroup$
Is $ln^2 x$ a standard notation?
$endgroup$
– StubbornAtom
Aug 5 '16 at 4:48
|
show 3 more comments
$begingroup$
In solving $displaystyleint_0^frac{pi}{4}dfrac{ln(sin x)ln(cos x)}{sin xcos x} dx,$ I have found that this is equal to $dfrac{1}{16}displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx.$ WolframAlpha says that the desired value is $dfrac{zeta(3)}{8},$ so I suspect a conversion to a series is necessary.
How do I prove $displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx=displaystylesum_{n=1}^inftydfrac{2}{n^3}$?
Note that the above integral can also be given as $displaystyleint_0^1dfrac{ln^2x}{1-x} dx$, which I know is equal to $displaystylesum_{n=0}^infty x^nln^2x.$
Also for reference, here is a picture of my original work to get to this point.
calculus integration sequences-and-series definite-integrals
$endgroup$
In solving $displaystyleint_0^frac{pi}{4}dfrac{ln(sin x)ln(cos x)}{sin xcos x} dx,$ I have found that this is equal to $dfrac{1}{16}displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx.$ WolframAlpha says that the desired value is $dfrac{zeta(3)}{8},$ so I suspect a conversion to a series is necessary.
How do I prove $displaystyleint_0^1dfrac{ln^2(1-x)}{x} dx=displaystylesum_{n=1}^inftydfrac{2}{n^3}$?
Note that the above integral can also be given as $displaystyleint_0^1dfrac{ln^2x}{1-x} dx$, which I know is equal to $displaystylesum_{n=0}^infty x^nln^2x.$
Also for reference, here is a picture of my original work to get to this point.
calculus integration sequences-and-series definite-integrals
calculus integration sequences-and-series definite-integrals
edited May 27 '18 at 4:32
Martin Sleziak
44.7k9117272
44.7k9117272
asked Aug 4 '16 at 20:31
ArcturusArcturus
536313
536313
$begingroup$
What's up with everyone usign displaystyle lately? We don't need that anywhere, especially in the title
$endgroup$
– Yuriy S
Aug 4 '16 at 21:01
$begingroup$
@You'reInMyEye That's just how I write integrals. Chalk it up to me not having a lot of experience on Math.SE and not knowing all of the minutiae that you all prefer. My apologies.
$endgroup$
– Arcturus
Aug 4 '16 at 21:09
$begingroup$
Eridan, that was nothing personal, more a comment for general public. I edited at least three displaystyle titles today. I'm not sure myself why it's not allowed, but I think it may cause some problems with browsing question and search
$endgroup$
– Yuriy S
Aug 4 '16 at 21:11
$begingroup$
@You'reInMyEye MSE strongly recommends ( in some documentation ) to avoid $texttt{displaystyle}$ in the title.
$endgroup$
– Felix Marin
Aug 4 '16 at 23:35
$begingroup$
Is $ln^2 x$ a standard notation?
$endgroup$
– StubbornAtom
Aug 5 '16 at 4:48
|
show 3 more comments
$begingroup$
What's up with everyone usign displaystyle lately? We don't need that anywhere, especially in the title
$endgroup$
– Yuriy S
Aug 4 '16 at 21:01
$begingroup$
@You'reInMyEye That's just how I write integrals. Chalk it up to me not having a lot of experience on Math.SE and not knowing all of the minutiae that you all prefer. My apologies.
$endgroup$
– Arcturus
Aug 4 '16 at 21:09
$begingroup$
Eridan, that was nothing personal, more a comment for general public. I edited at least three displaystyle titles today. I'm not sure myself why it's not allowed, but I think it may cause some problems with browsing question and search
$endgroup$
– Yuriy S
Aug 4 '16 at 21:11
$begingroup$
@You'reInMyEye MSE strongly recommends ( in some documentation ) to avoid $texttt{displaystyle}$ in the title.
$endgroup$
– Felix Marin
Aug 4 '16 at 23:35
$begingroup$
Is $ln^2 x$ a standard notation?
$endgroup$
– StubbornAtom
Aug 5 '16 at 4:48
$begingroup$
What's up with everyone usign displaystyle lately? We don't need that anywhere, especially in the title
$endgroup$
– Yuriy S
Aug 4 '16 at 21:01
$begingroup$
What's up with everyone usign displaystyle lately? We don't need that anywhere, especially in the title
$endgroup$
– Yuriy S
Aug 4 '16 at 21:01
$begingroup$
@You'reInMyEye That's just how I write integrals. Chalk it up to me not having a lot of experience on Math.SE and not knowing all of the minutiae that you all prefer. My apologies.
$endgroup$
– Arcturus
Aug 4 '16 at 21:09
$begingroup$
@You'reInMyEye That's just how I write integrals. Chalk it up to me not having a lot of experience on Math.SE and not knowing all of the minutiae that you all prefer. My apologies.
$endgroup$
– Arcturus
Aug 4 '16 at 21:09
$begingroup$
Eridan, that was nothing personal, more a comment for general public. I edited at least three displaystyle titles today. I'm not sure myself why it's not allowed, but I think it may cause some problems with browsing question and search
$endgroup$
– Yuriy S
Aug 4 '16 at 21:11
$begingroup$
Eridan, that was nothing personal, more a comment for general public. I edited at least three displaystyle titles today. I'm not sure myself why it's not allowed, but I think it may cause some problems with browsing question and search
$endgroup$
– Yuriy S
Aug 4 '16 at 21:11
$begingroup$
@You'reInMyEye MSE strongly recommends ( in some documentation ) to avoid $texttt{displaystyle}$ in the title.
$endgroup$
– Felix Marin
Aug 4 '16 at 23:35
$begingroup$
@You'reInMyEye MSE strongly recommends ( in some documentation ) to avoid $texttt{displaystyle}$ in the title.
$endgroup$
– Felix Marin
Aug 4 '16 at 23:35
$begingroup$
Is $ln^2 x$ a standard notation?
$endgroup$
– StubbornAtom
Aug 5 '16 at 4:48
$begingroup$
Is $ln^2 x$ a standard notation?
$endgroup$
– StubbornAtom
Aug 5 '16 at 4:48
|
show 3 more comments
5 Answers
5
active
oldest
votes
$begingroup$
We have $$int_{0}^{1}frac{log^{2}left(1-xright)}{x}dxstackrel{xrightarrow1-x}{=}int_{0}^{1}frac{log^{2}left(xright)}{1-x}dx$$ $$stackrel{DCT}{=}
sum_{kgeq0}int_{0}^{1}log^{2}left(xright)x^{k}dxstackrel{IBP}{=}
2sum_{kgeq0}frac{1}{left(k+1right)^{3}}=color{red}{2zetaleft(3right)}.$$
$endgroup$
$begingroup$
Can you please tell me what $DCT$ means.
$endgroup$
– Ahmed S. Attaalla
Aug 4 '16 at 23:44
1
$begingroup$
@AhmedS.Attaalla I believe it's the dominated convergence theorem which allows him to switch the integral sign with the sum, since he used a geometric series representation of $frac{1}{1-x}$.
$endgroup$
– mike van der naald
Aug 5 '16 at 0:14
add a comment |
$begingroup$
I thought it might be instructive to present a way forward that exploits the Polylogarithm Functions. To that end, we proceed.
Note that integrating by parts with $u=log^2(1-x)$ and $v=log(x)$, we have
$$begin{align}
int_0^1 frac{log^2(1-x)}{x},dx=2int_0^1 frac{log(1-x)log(x)}{1-x},dx tag 1
end{align}$$
Integrating by parts the right-hand side of $(1)$ with $u=log(1-x)$ and $v=text{Li}_2(1-x)$ yields
$$begin{align}
2int_0^1 frac{log(1-x)log(x)}{1-x},dx&=2int_0^1 frac{text{Li}_2(1-x)}{1-x},dx\\
&=2int_0^1 frac{text{Li}_2(x)}{x},dx\\
&=2text{Li}_3(1)\\
&=2zeta(3)
end{align}$$
as expected!
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle,{#1},rightrangle}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{Li}[1]{,mathrm{Li}_{#1}}
newcommand{mc}[1]{,mathcal{#1}}
newcommand{mrm}[1]{,mathrm{#1}}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
- This one is $ul{slightly different}$ of the straightforward @Dr. MV answer:
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} &,,,
stackrel{x mapsto pars{1 - x}}{=},,,
{1 over 16}int_{0}^{1}{ln^{2}pars{x} over 1 - x},dd x
end{align}
Integrating by Parts a few times ( the main purpose is to 'sit' a
$ds{lnpars{1 - x}}$-factor in the integrand numerator ):
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} & =
{1 over 16}int_{0}^{1}lnpars{1 - x}
bracks{2lnpars{x},{1 over x}},dd x =
-,{1 over 8}int_{0}^{1}Li{2}'pars{x}lnpars{x},dd x
\[5mm] & =
{1 over 8}int_{0}^{1}Li{2}pars{x},{1 over x},dd x =
{1 over 8}int_{0}^{1}Li{3}'pars{x},dd x = {1 over 8},Li{3}pars{1}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align} - Another approach uses the Beta Function
$ds{mrm{B}pars{mu,nu} =
int_{0}^{1}x^{mu - 1},pars{1 - x}^{nu - 1},,dd x =
{Gammapars{mu}Gammapars{nu} over Gammapars{mu + nu}}}$ with
$ds{Repars{mu} > 0,, Repars{nu} > 0}$. $ds{Gamma,}$: Gamma
Function.
begin{align}
&color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}
int_{0}^{1}{pars{1 - x}^{mu} - 1 over x},dd x
\[5mm] & =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}bracks{mu
int_{0}^{1}lnpars{x}pars{1 - x}^{mu - 1},dd x} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}
bracks{muint_{0}^{1}x^{nu}pars{1 - x}^{mu - 1},dd x}
\[5mm] & =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{mu,{Gammapars{nu + 1}Gammapars{mu} over Gammapars{mu + nu + 1}}} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{Gammapars{nu + 1}Gammapars{mu + 1} over Gammapars{mu + nu + 1}}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align}
$endgroup$
add a comment |
$begingroup$
Here is an approach that makes use of an Euler sum.
We will first find a Maclaurin series expansion for $ln^2 (1 - x)$. As
$$ln (1 - x) = - sum_{n = 1}^infty frac{x^n}{n},$$
we have
begin{align*}
ln^2 (1 - x) &= left (- sum_{n = 1}^infty frac{x^n}{n} right ) cdot left (- sum_{n = 1}^infty frac{x^n}{n} right ).
end{align*}
Shifting the summation index $n mapsto n + 1$ gives
begin{align*}
ln^2 (1 - x) &= x^2 left (- sum_{n = 0}^infty frac{x^n}{n + 1} right ) cdot left (- sum_{n = 0}^infty frac{x^n}{n + 1} right )\
&= sum_{n = 0}^infty sum_{k = 0}^n frac{x^{n + 2}}{(k + 1)(n - k + 1)},
end{align*}
where the last line has been obtained by applying the Cauchy product.
Shifting the summation indices as follows: $n mapsto n - 2, k mapsto k - 1$ gives
begin{align*}
ln^2 (1 - x) &= sum_{n = 2}^infty sum_{k = 1}^{n - 1} frac{x^n}{k(n - k)}\
&= sum_{n = 2}^infty sum_{k = 1}^{n - 1} left (frac{1}{nk} + frac{1}{n(n - k)} right ) x^n\
&= 2 sum_{n = 2}^infty frac{x^n}{n} sum_{k = 1}^{n - 1} frac{1}{k}\
&= 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n},
end{align*}
where $H_n$ is the $n$th harmonic number.
Now evaluating the integral. From the above Maclaurin series expansion for $ln^2 (1 - x)$ the integral can be written as
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} , dx = 2 sum_{n = 2}^infty frac{H_{n - 1}}{n^2}.
end{align*}
From properties of the harmonic numbers we have
$$H_n = H_{n - 1} + frac{1}{n},$$
thus
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_n}{n^2} - 2 sum_{n = 2}^infty frac{1}{n^3} = 2 sum_{n = 1}^infty frac{H_n}{n^2} - 2 sum_{n = 1}^infty frac{1}{n^3}.
end{align*}
Each sum can be readily found. They are:
$$sum_{n = 1}^infty frac{1}{n^3} = zeta (3) quad text{and} quad sum_{n = 1}^infty frac{H_n}{n^2} = 2 zeta (3).$$
A proof of the result for the second sum containing the harmonic number can, for example, be found here. Thus
$$int_0^1 frac{ln^2 (1 - x)}{x} , dx = 4 zeta (3) - 2 zeta (3) = 2 zeta (3),$$
as required.
$endgroup$
add a comment |
$begingroup$
Everything you did is good. Indeed, it suffices to show that $I_n:=int_0^1 x^n ln^2 x = frac{2}{(n+1)^3}$ to conclude. The interversion $int / Sigma$ is possible as everything here is positive.
To compute $I_n$, I tried an integration by parts (using that a primitive of $ln^2 x$ is $x(ln^2 x-2ln x)$) to obtain the relation $$I_n = frac{-2}{n+1}int_0^1 x^nln x.$$
Let us call this latter integral $J_n$. Once again with an integration by parts, you can show that $J_n = frac{-1}{(n+1)^2}$, and thus conclude.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1882695%2ffind-int-01-frac-ln21-xx-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $$int_{0}^{1}frac{log^{2}left(1-xright)}{x}dxstackrel{xrightarrow1-x}{=}int_{0}^{1}frac{log^{2}left(xright)}{1-x}dx$$ $$stackrel{DCT}{=}
sum_{kgeq0}int_{0}^{1}log^{2}left(xright)x^{k}dxstackrel{IBP}{=}
2sum_{kgeq0}frac{1}{left(k+1right)^{3}}=color{red}{2zetaleft(3right)}.$$
$endgroup$
$begingroup$
Can you please tell me what $DCT$ means.
$endgroup$
– Ahmed S. Attaalla
Aug 4 '16 at 23:44
1
$begingroup$
@AhmedS.Attaalla I believe it's the dominated convergence theorem which allows him to switch the integral sign with the sum, since he used a geometric series representation of $frac{1}{1-x}$.
$endgroup$
– mike van der naald
Aug 5 '16 at 0:14
add a comment |
$begingroup$
We have $$int_{0}^{1}frac{log^{2}left(1-xright)}{x}dxstackrel{xrightarrow1-x}{=}int_{0}^{1}frac{log^{2}left(xright)}{1-x}dx$$ $$stackrel{DCT}{=}
sum_{kgeq0}int_{0}^{1}log^{2}left(xright)x^{k}dxstackrel{IBP}{=}
2sum_{kgeq0}frac{1}{left(k+1right)^{3}}=color{red}{2zetaleft(3right)}.$$
$endgroup$
$begingroup$
Can you please tell me what $DCT$ means.
$endgroup$
– Ahmed S. Attaalla
Aug 4 '16 at 23:44
1
$begingroup$
@AhmedS.Attaalla I believe it's the dominated convergence theorem which allows him to switch the integral sign with the sum, since he used a geometric series representation of $frac{1}{1-x}$.
$endgroup$
– mike van der naald
Aug 5 '16 at 0:14
add a comment |
$begingroup$
We have $$int_{0}^{1}frac{log^{2}left(1-xright)}{x}dxstackrel{xrightarrow1-x}{=}int_{0}^{1}frac{log^{2}left(xright)}{1-x}dx$$ $$stackrel{DCT}{=}
sum_{kgeq0}int_{0}^{1}log^{2}left(xright)x^{k}dxstackrel{IBP}{=}
2sum_{kgeq0}frac{1}{left(k+1right)^{3}}=color{red}{2zetaleft(3right)}.$$
$endgroup$
We have $$int_{0}^{1}frac{log^{2}left(1-xright)}{x}dxstackrel{xrightarrow1-x}{=}int_{0}^{1}frac{log^{2}left(xright)}{1-x}dx$$ $$stackrel{DCT}{=}
sum_{kgeq0}int_{0}^{1}log^{2}left(xright)x^{k}dxstackrel{IBP}{=}
2sum_{kgeq0}frac{1}{left(k+1right)^{3}}=color{red}{2zetaleft(3right)}.$$
edited Aug 4 '16 at 20:53
answered Aug 4 '16 at 20:44
Marco CantariniMarco Cantarini
29.1k23373
29.1k23373
$begingroup$
Can you please tell me what $DCT$ means.
$endgroup$
– Ahmed S. Attaalla
Aug 4 '16 at 23:44
1
$begingroup$
@AhmedS.Attaalla I believe it's the dominated convergence theorem which allows him to switch the integral sign with the sum, since he used a geometric series representation of $frac{1}{1-x}$.
$endgroup$
– mike van der naald
Aug 5 '16 at 0:14
add a comment |
$begingroup$
Can you please tell me what $DCT$ means.
$endgroup$
– Ahmed S. Attaalla
Aug 4 '16 at 23:44
1
$begingroup$
@AhmedS.Attaalla I believe it's the dominated convergence theorem which allows him to switch the integral sign with the sum, since he used a geometric series representation of $frac{1}{1-x}$.
$endgroup$
– mike van der naald
Aug 5 '16 at 0:14
$begingroup$
Can you please tell me what $DCT$ means.
$endgroup$
– Ahmed S. Attaalla
Aug 4 '16 at 23:44
$begingroup$
Can you please tell me what $DCT$ means.
$endgroup$
– Ahmed S. Attaalla
Aug 4 '16 at 23:44
1
1
$begingroup$
@AhmedS.Attaalla I believe it's the dominated convergence theorem which allows him to switch the integral sign with the sum, since he used a geometric series representation of $frac{1}{1-x}$.
$endgroup$
– mike van der naald
Aug 5 '16 at 0:14
$begingroup$
@AhmedS.Attaalla I believe it's the dominated convergence theorem which allows him to switch the integral sign with the sum, since he used a geometric series representation of $frac{1}{1-x}$.
$endgroup$
– mike van der naald
Aug 5 '16 at 0:14
add a comment |
$begingroup$
I thought it might be instructive to present a way forward that exploits the Polylogarithm Functions. To that end, we proceed.
Note that integrating by parts with $u=log^2(1-x)$ and $v=log(x)$, we have
$$begin{align}
int_0^1 frac{log^2(1-x)}{x},dx=2int_0^1 frac{log(1-x)log(x)}{1-x},dx tag 1
end{align}$$
Integrating by parts the right-hand side of $(1)$ with $u=log(1-x)$ and $v=text{Li}_2(1-x)$ yields
$$begin{align}
2int_0^1 frac{log(1-x)log(x)}{1-x},dx&=2int_0^1 frac{text{Li}_2(1-x)}{1-x},dx\\
&=2int_0^1 frac{text{Li}_2(x)}{x},dx\\
&=2text{Li}_3(1)\\
&=2zeta(3)
end{align}$$
as expected!
$endgroup$
add a comment |
$begingroup$
I thought it might be instructive to present a way forward that exploits the Polylogarithm Functions. To that end, we proceed.
Note that integrating by parts with $u=log^2(1-x)$ and $v=log(x)$, we have
$$begin{align}
int_0^1 frac{log^2(1-x)}{x},dx=2int_0^1 frac{log(1-x)log(x)}{1-x},dx tag 1
end{align}$$
Integrating by parts the right-hand side of $(1)$ with $u=log(1-x)$ and $v=text{Li}_2(1-x)$ yields
$$begin{align}
2int_0^1 frac{log(1-x)log(x)}{1-x},dx&=2int_0^1 frac{text{Li}_2(1-x)}{1-x},dx\\
&=2int_0^1 frac{text{Li}_2(x)}{x},dx\\
&=2text{Li}_3(1)\\
&=2zeta(3)
end{align}$$
as expected!
$endgroup$
add a comment |
$begingroup$
I thought it might be instructive to present a way forward that exploits the Polylogarithm Functions. To that end, we proceed.
Note that integrating by parts with $u=log^2(1-x)$ and $v=log(x)$, we have
$$begin{align}
int_0^1 frac{log^2(1-x)}{x},dx=2int_0^1 frac{log(1-x)log(x)}{1-x},dx tag 1
end{align}$$
Integrating by parts the right-hand side of $(1)$ with $u=log(1-x)$ and $v=text{Li}_2(1-x)$ yields
$$begin{align}
2int_0^1 frac{log(1-x)log(x)}{1-x},dx&=2int_0^1 frac{text{Li}_2(1-x)}{1-x},dx\\
&=2int_0^1 frac{text{Li}_2(x)}{x},dx\\
&=2text{Li}_3(1)\\
&=2zeta(3)
end{align}$$
as expected!
$endgroup$
I thought it might be instructive to present a way forward that exploits the Polylogarithm Functions. To that end, we proceed.
Note that integrating by parts with $u=log^2(1-x)$ and $v=log(x)$, we have
$$begin{align}
int_0^1 frac{log^2(1-x)}{x},dx=2int_0^1 frac{log(1-x)log(x)}{1-x},dx tag 1
end{align}$$
Integrating by parts the right-hand side of $(1)$ with $u=log(1-x)$ and $v=text{Li}_2(1-x)$ yields
$$begin{align}
2int_0^1 frac{log(1-x)log(x)}{1-x},dx&=2int_0^1 frac{text{Li}_2(1-x)}{1-x},dx\\
&=2int_0^1 frac{text{Li}_2(x)}{x},dx\\
&=2text{Li}_3(1)\\
&=2zeta(3)
end{align}$$
as expected!
answered Aug 4 '16 at 21:10
Mark ViolaMark Viola
131k1275171
131k1275171
add a comment |
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle,{#1},rightrangle}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{Li}[1]{,mathrm{Li}_{#1}}
newcommand{mc}[1]{,mathcal{#1}}
newcommand{mrm}[1]{,mathrm{#1}}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
- This one is $ul{slightly different}$ of the straightforward @Dr. MV answer:
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} &,,,
stackrel{x mapsto pars{1 - x}}{=},,,
{1 over 16}int_{0}^{1}{ln^{2}pars{x} over 1 - x},dd x
end{align}
Integrating by Parts a few times ( the main purpose is to 'sit' a
$ds{lnpars{1 - x}}$-factor in the integrand numerator ):
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} & =
{1 over 16}int_{0}^{1}lnpars{1 - x}
bracks{2lnpars{x},{1 over x}},dd x =
-,{1 over 8}int_{0}^{1}Li{2}'pars{x}lnpars{x},dd x
\[5mm] & =
{1 over 8}int_{0}^{1}Li{2}pars{x},{1 over x},dd x =
{1 over 8}int_{0}^{1}Li{3}'pars{x},dd x = {1 over 8},Li{3}pars{1}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align} - Another approach uses the Beta Function
$ds{mrm{B}pars{mu,nu} =
int_{0}^{1}x^{mu - 1},pars{1 - x}^{nu - 1},,dd x =
{Gammapars{mu}Gammapars{nu} over Gammapars{mu + nu}}}$ with
$ds{Repars{mu} > 0,, Repars{nu} > 0}$. $ds{Gamma,}$: Gamma
Function.
begin{align}
&color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}
int_{0}^{1}{pars{1 - x}^{mu} - 1 over x},dd x
\[5mm] & =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}bracks{mu
int_{0}^{1}lnpars{x}pars{1 - x}^{mu - 1},dd x} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}
bracks{muint_{0}^{1}x^{nu}pars{1 - x}^{mu - 1},dd x}
\[5mm] & =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{mu,{Gammapars{nu + 1}Gammapars{mu} over Gammapars{mu + nu + 1}}} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{Gammapars{nu + 1}Gammapars{mu + 1} over Gammapars{mu + nu + 1}}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle,{#1},rightrangle}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{Li}[1]{,mathrm{Li}_{#1}}
newcommand{mc}[1]{,mathcal{#1}}
newcommand{mrm}[1]{,mathrm{#1}}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
- This one is $ul{slightly different}$ of the straightforward @Dr. MV answer:
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} &,,,
stackrel{x mapsto pars{1 - x}}{=},,,
{1 over 16}int_{0}^{1}{ln^{2}pars{x} over 1 - x},dd x
end{align}
Integrating by Parts a few times ( the main purpose is to 'sit' a
$ds{lnpars{1 - x}}$-factor in the integrand numerator ):
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} & =
{1 over 16}int_{0}^{1}lnpars{1 - x}
bracks{2lnpars{x},{1 over x}},dd x =
-,{1 over 8}int_{0}^{1}Li{2}'pars{x}lnpars{x},dd x
\[5mm] & =
{1 over 8}int_{0}^{1}Li{2}pars{x},{1 over x},dd x =
{1 over 8}int_{0}^{1}Li{3}'pars{x},dd x = {1 over 8},Li{3}pars{1}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align} - Another approach uses the Beta Function
$ds{mrm{B}pars{mu,nu} =
int_{0}^{1}x^{mu - 1},pars{1 - x}^{nu - 1},,dd x =
{Gammapars{mu}Gammapars{nu} over Gammapars{mu + nu}}}$ with
$ds{Repars{mu} > 0,, Repars{nu} > 0}$. $ds{Gamma,}$: Gamma
Function.
begin{align}
&color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}
int_{0}^{1}{pars{1 - x}^{mu} - 1 over x},dd x
\[5mm] & =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}bracks{mu
int_{0}^{1}lnpars{x}pars{1 - x}^{mu - 1},dd x} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}
bracks{muint_{0}^{1}x^{nu}pars{1 - x}^{mu - 1},dd x}
\[5mm] & =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{mu,{Gammapars{nu + 1}Gammapars{mu} over Gammapars{mu + nu + 1}}} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{Gammapars{nu + 1}Gammapars{mu + 1} over Gammapars{mu + nu + 1}}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle,{#1},rightrangle}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{Li}[1]{,mathrm{Li}_{#1}}
newcommand{mc}[1]{,mathcal{#1}}
newcommand{mrm}[1]{,mathrm{#1}}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
- This one is $ul{slightly different}$ of the straightforward @Dr. MV answer:
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} &,,,
stackrel{x mapsto pars{1 - x}}{=},,,
{1 over 16}int_{0}^{1}{ln^{2}pars{x} over 1 - x},dd x
end{align}
Integrating by Parts a few times ( the main purpose is to 'sit' a
$ds{lnpars{1 - x}}$-factor in the integrand numerator ):
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} & =
{1 over 16}int_{0}^{1}lnpars{1 - x}
bracks{2lnpars{x},{1 over x}},dd x =
-,{1 over 8}int_{0}^{1}Li{2}'pars{x}lnpars{x},dd x
\[5mm] & =
{1 over 8}int_{0}^{1}Li{2}pars{x},{1 over x},dd x =
{1 over 8}int_{0}^{1}Li{3}'pars{x},dd x = {1 over 8},Li{3}pars{1}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align} - Another approach uses the Beta Function
$ds{mrm{B}pars{mu,nu} =
int_{0}^{1}x^{mu - 1},pars{1 - x}^{nu - 1},,dd x =
{Gammapars{mu}Gammapars{nu} over Gammapars{mu + nu}}}$ with
$ds{Repars{mu} > 0,, Repars{nu} > 0}$. $ds{Gamma,}$: Gamma
Function.
begin{align}
&color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}
int_{0}^{1}{pars{1 - x}^{mu} - 1 over x},dd x
\[5mm] & =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}bracks{mu
int_{0}^{1}lnpars{x}pars{1 - x}^{mu - 1},dd x} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}
bracks{muint_{0}^{1}x^{nu}pars{1 - x}^{mu - 1},dd x}
\[5mm] & =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{mu,{Gammapars{nu + 1}Gammapars{mu} over Gammapars{mu + nu + 1}}} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{Gammapars{nu + 1}Gammapars{mu + 1} over Gammapars{mu + nu + 1}}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align}
$endgroup$
$newcommand{angles}[1]{leftlangle,{#1},rightrangle}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{Li}[1]{,mathrm{Li}_{#1}}
newcommand{mc}[1]{,mathcal{#1}}
newcommand{mrm}[1]{,mathrm{#1}}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
- This one is $ul{slightly different}$ of the straightforward @Dr. MV answer:
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} &,,,
stackrel{x mapsto pars{1 - x}}{=},,,
{1 over 16}int_{0}^{1}{ln^{2}pars{x} over 1 - x},dd x
end{align}
Integrating by Parts a few times ( the main purpose is to 'sit' a
$ds{lnpars{1 - x}}$-factor in the integrand numerator ):
begin{align}
color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} & =
{1 over 16}int_{0}^{1}lnpars{1 - x}
bracks{2lnpars{x},{1 over x}},dd x =
-,{1 over 8}int_{0}^{1}Li{2}'pars{x}lnpars{x},dd x
\[5mm] & =
{1 over 8}int_{0}^{1}Li{2}pars{x},{1 over x},dd x =
{1 over 8}int_{0}^{1}Li{3}'pars{x},dd x = {1 over 8},Li{3}pars{1}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align} - Another approach uses the Beta Function
$ds{mrm{B}pars{mu,nu} =
int_{0}^{1}x^{mu - 1},pars{1 - x}^{nu - 1},,dd x =
{Gammapars{mu}Gammapars{nu} over Gammapars{mu + nu}}}$ with
$ds{Repars{mu} > 0,, Repars{nu} > 0}$. $ds{Gamma,}$: Gamma
Function.
begin{align}
&color{#f00}{{1 over 16}int_{0}^{1}{ln^{2}pars{1 - x} over x},dd x} =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}
int_{0}^{1}{pars{1 - x}^{mu} - 1 over x},dd x
\[5mm] & =
{1 over 16},lim_{mu to 0},,partiald[2]{}{mu}bracks{mu
int_{0}^{1}lnpars{x}pars{1 - x}^{mu - 1},dd x} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}
bracks{muint_{0}^{1}x^{nu}pars{1 - x}^{mu - 1},dd x}
\[5mm] & =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{mu,{Gammapars{nu + 1}Gammapars{mu} over Gammapars{mu + nu + 1}}} =
{1 over 16},lim_{mu to 0 atop nu to 0},,{partial^{3} over partialmu^{2},partialnu}bracks{Gammapars{nu + 1}Gammapars{mu + 1} over Gammapars{mu + nu + 1}}
\[5mm] & = color{#f00}{{1 over 8},zetapars{3}}
end{align}
edited Apr 13 '17 at 12:21
Community♦
1
1
answered Aug 4 '16 at 22:49
Felix MarinFelix Marin
67.5k7107141
67.5k7107141
add a comment |
add a comment |
$begingroup$
Here is an approach that makes use of an Euler sum.
We will first find a Maclaurin series expansion for $ln^2 (1 - x)$. As
$$ln (1 - x) = - sum_{n = 1}^infty frac{x^n}{n},$$
we have
begin{align*}
ln^2 (1 - x) &= left (- sum_{n = 1}^infty frac{x^n}{n} right ) cdot left (- sum_{n = 1}^infty frac{x^n}{n} right ).
end{align*}
Shifting the summation index $n mapsto n + 1$ gives
begin{align*}
ln^2 (1 - x) &= x^2 left (- sum_{n = 0}^infty frac{x^n}{n + 1} right ) cdot left (- sum_{n = 0}^infty frac{x^n}{n + 1} right )\
&= sum_{n = 0}^infty sum_{k = 0}^n frac{x^{n + 2}}{(k + 1)(n - k + 1)},
end{align*}
where the last line has been obtained by applying the Cauchy product.
Shifting the summation indices as follows: $n mapsto n - 2, k mapsto k - 1$ gives
begin{align*}
ln^2 (1 - x) &= sum_{n = 2}^infty sum_{k = 1}^{n - 1} frac{x^n}{k(n - k)}\
&= sum_{n = 2}^infty sum_{k = 1}^{n - 1} left (frac{1}{nk} + frac{1}{n(n - k)} right ) x^n\
&= 2 sum_{n = 2}^infty frac{x^n}{n} sum_{k = 1}^{n - 1} frac{1}{k}\
&= 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n},
end{align*}
where $H_n$ is the $n$th harmonic number.
Now evaluating the integral. From the above Maclaurin series expansion for $ln^2 (1 - x)$ the integral can be written as
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} , dx = 2 sum_{n = 2}^infty frac{H_{n - 1}}{n^2}.
end{align*}
From properties of the harmonic numbers we have
$$H_n = H_{n - 1} + frac{1}{n},$$
thus
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_n}{n^2} - 2 sum_{n = 2}^infty frac{1}{n^3} = 2 sum_{n = 1}^infty frac{H_n}{n^2} - 2 sum_{n = 1}^infty frac{1}{n^3}.
end{align*}
Each sum can be readily found. They are:
$$sum_{n = 1}^infty frac{1}{n^3} = zeta (3) quad text{and} quad sum_{n = 1}^infty frac{H_n}{n^2} = 2 zeta (3).$$
A proof of the result for the second sum containing the harmonic number can, for example, be found here. Thus
$$int_0^1 frac{ln^2 (1 - x)}{x} , dx = 4 zeta (3) - 2 zeta (3) = 2 zeta (3),$$
as required.
$endgroup$
add a comment |
$begingroup$
Here is an approach that makes use of an Euler sum.
We will first find a Maclaurin series expansion for $ln^2 (1 - x)$. As
$$ln (1 - x) = - sum_{n = 1}^infty frac{x^n}{n},$$
we have
begin{align*}
ln^2 (1 - x) &= left (- sum_{n = 1}^infty frac{x^n}{n} right ) cdot left (- sum_{n = 1}^infty frac{x^n}{n} right ).
end{align*}
Shifting the summation index $n mapsto n + 1$ gives
begin{align*}
ln^2 (1 - x) &= x^2 left (- sum_{n = 0}^infty frac{x^n}{n + 1} right ) cdot left (- sum_{n = 0}^infty frac{x^n}{n + 1} right )\
&= sum_{n = 0}^infty sum_{k = 0}^n frac{x^{n + 2}}{(k + 1)(n - k + 1)},
end{align*}
where the last line has been obtained by applying the Cauchy product.
Shifting the summation indices as follows: $n mapsto n - 2, k mapsto k - 1$ gives
begin{align*}
ln^2 (1 - x) &= sum_{n = 2}^infty sum_{k = 1}^{n - 1} frac{x^n}{k(n - k)}\
&= sum_{n = 2}^infty sum_{k = 1}^{n - 1} left (frac{1}{nk} + frac{1}{n(n - k)} right ) x^n\
&= 2 sum_{n = 2}^infty frac{x^n}{n} sum_{k = 1}^{n - 1} frac{1}{k}\
&= 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n},
end{align*}
where $H_n$ is the $n$th harmonic number.
Now evaluating the integral. From the above Maclaurin series expansion for $ln^2 (1 - x)$ the integral can be written as
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} , dx = 2 sum_{n = 2}^infty frac{H_{n - 1}}{n^2}.
end{align*}
From properties of the harmonic numbers we have
$$H_n = H_{n - 1} + frac{1}{n},$$
thus
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_n}{n^2} - 2 sum_{n = 2}^infty frac{1}{n^3} = 2 sum_{n = 1}^infty frac{H_n}{n^2} - 2 sum_{n = 1}^infty frac{1}{n^3}.
end{align*}
Each sum can be readily found. They are:
$$sum_{n = 1}^infty frac{1}{n^3} = zeta (3) quad text{and} quad sum_{n = 1}^infty frac{H_n}{n^2} = 2 zeta (3).$$
A proof of the result for the second sum containing the harmonic number can, for example, be found here. Thus
$$int_0^1 frac{ln^2 (1 - x)}{x} , dx = 4 zeta (3) - 2 zeta (3) = 2 zeta (3),$$
as required.
$endgroup$
add a comment |
$begingroup$
Here is an approach that makes use of an Euler sum.
We will first find a Maclaurin series expansion for $ln^2 (1 - x)$. As
$$ln (1 - x) = - sum_{n = 1}^infty frac{x^n}{n},$$
we have
begin{align*}
ln^2 (1 - x) &= left (- sum_{n = 1}^infty frac{x^n}{n} right ) cdot left (- sum_{n = 1}^infty frac{x^n}{n} right ).
end{align*}
Shifting the summation index $n mapsto n + 1$ gives
begin{align*}
ln^2 (1 - x) &= x^2 left (- sum_{n = 0}^infty frac{x^n}{n + 1} right ) cdot left (- sum_{n = 0}^infty frac{x^n}{n + 1} right )\
&= sum_{n = 0}^infty sum_{k = 0}^n frac{x^{n + 2}}{(k + 1)(n - k + 1)},
end{align*}
where the last line has been obtained by applying the Cauchy product.
Shifting the summation indices as follows: $n mapsto n - 2, k mapsto k - 1$ gives
begin{align*}
ln^2 (1 - x) &= sum_{n = 2}^infty sum_{k = 1}^{n - 1} frac{x^n}{k(n - k)}\
&= sum_{n = 2}^infty sum_{k = 1}^{n - 1} left (frac{1}{nk} + frac{1}{n(n - k)} right ) x^n\
&= 2 sum_{n = 2}^infty frac{x^n}{n} sum_{k = 1}^{n - 1} frac{1}{k}\
&= 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n},
end{align*}
where $H_n$ is the $n$th harmonic number.
Now evaluating the integral. From the above Maclaurin series expansion for $ln^2 (1 - x)$ the integral can be written as
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} , dx = 2 sum_{n = 2}^infty frac{H_{n - 1}}{n^2}.
end{align*}
From properties of the harmonic numbers we have
$$H_n = H_{n - 1} + frac{1}{n},$$
thus
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_n}{n^2} - 2 sum_{n = 2}^infty frac{1}{n^3} = 2 sum_{n = 1}^infty frac{H_n}{n^2} - 2 sum_{n = 1}^infty frac{1}{n^3}.
end{align*}
Each sum can be readily found. They are:
$$sum_{n = 1}^infty frac{1}{n^3} = zeta (3) quad text{and} quad sum_{n = 1}^infty frac{H_n}{n^2} = 2 zeta (3).$$
A proof of the result for the second sum containing the harmonic number can, for example, be found here. Thus
$$int_0^1 frac{ln^2 (1 - x)}{x} , dx = 4 zeta (3) - 2 zeta (3) = 2 zeta (3),$$
as required.
$endgroup$
Here is an approach that makes use of an Euler sum.
We will first find a Maclaurin series expansion for $ln^2 (1 - x)$. As
$$ln (1 - x) = - sum_{n = 1}^infty frac{x^n}{n},$$
we have
begin{align*}
ln^2 (1 - x) &= left (- sum_{n = 1}^infty frac{x^n}{n} right ) cdot left (- sum_{n = 1}^infty frac{x^n}{n} right ).
end{align*}
Shifting the summation index $n mapsto n + 1$ gives
begin{align*}
ln^2 (1 - x) &= x^2 left (- sum_{n = 0}^infty frac{x^n}{n + 1} right ) cdot left (- sum_{n = 0}^infty frac{x^n}{n + 1} right )\
&= sum_{n = 0}^infty sum_{k = 0}^n frac{x^{n + 2}}{(k + 1)(n - k + 1)},
end{align*}
where the last line has been obtained by applying the Cauchy product.
Shifting the summation indices as follows: $n mapsto n - 2, k mapsto k - 1$ gives
begin{align*}
ln^2 (1 - x) &= sum_{n = 2}^infty sum_{k = 1}^{n - 1} frac{x^n}{k(n - k)}\
&= sum_{n = 2}^infty sum_{k = 1}^{n - 1} left (frac{1}{nk} + frac{1}{n(n - k)} right ) x^n\
&= 2 sum_{n = 2}^infty frac{x^n}{n} sum_{k = 1}^{n - 1} frac{1}{k}\
&= 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n},
end{align*}
where $H_n$ is the $n$th harmonic number.
Now evaluating the integral. From the above Maclaurin series expansion for $ln^2 (1 - x)$ the integral can be written as
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} , dx = 2 sum_{n = 2}^infty frac{H_{n - 1}}{n^2}.
end{align*}
From properties of the harmonic numbers we have
$$H_n = H_{n - 1} + frac{1}{n},$$
thus
begin{align*}
int_0^1 frac{ln^2 (1 - x)}{x} , dx &= 2 sum_{n = 2}^infty frac{H_n}{n^2} - 2 sum_{n = 2}^infty frac{1}{n^3} = 2 sum_{n = 1}^infty frac{H_n}{n^2} - 2 sum_{n = 1}^infty frac{1}{n^3}.
end{align*}
Each sum can be readily found. They are:
$$sum_{n = 1}^infty frac{1}{n^3} = zeta (3) quad text{and} quad sum_{n = 1}^infty frac{H_n}{n^2} = 2 zeta (3).$$
A proof of the result for the second sum containing the harmonic number can, for example, be found here. Thus
$$int_0^1 frac{ln^2 (1 - x)}{x} , dx = 4 zeta (3) - 2 zeta (3) = 2 zeta (3),$$
as required.
edited Jan 11 at 11:21
answered Jan 3 '18 at 3:29
omegadotomegadot
5,1872727
5,1872727
add a comment |
add a comment |
$begingroup$
Everything you did is good. Indeed, it suffices to show that $I_n:=int_0^1 x^n ln^2 x = frac{2}{(n+1)^3}$ to conclude. The interversion $int / Sigma$ is possible as everything here is positive.
To compute $I_n$, I tried an integration by parts (using that a primitive of $ln^2 x$ is $x(ln^2 x-2ln x)$) to obtain the relation $$I_n = frac{-2}{n+1}int_0^1 x^nln x.$$
Let us call this latter integral $J_n$. Once again with an integration by parts, you can show that $J_n = frac{-1}{(n+1)^2}$, and thus conclude.
$endgroup$
add a comment |
$begingroup$
Everything you did is good. Indeed, it suffices to show that $I_n:=int_0^1 x^n ln^2 x = frac{2}{(n+1)^3}$ to conclude. The interversion $int / Sigma$ is possible as everything here is positive.
To compute $I_n$, I tried an integration by parts (using that a primitive of $ln^2 x$ is $x(ln^2 x-2ln x)$) to obtain the relation $$I_n = frac{-2}{n+1}int_0^1 x^nln x.$$
Let us call this latter integral $J_n$. Once again with an integration by parts, you can show that $J_n = frac{-1}{(n+1)^2}$, and thus conclude.
$endgroup$
add a comment |
$begingroup$
Everything you did is good. Indeed, it suffices to show that $I_n:=int_0^1 x^n ln^2 x = frac{2}{(n+1)^3}$ to conclude. The interversion $int / Sigma$ is possible as everything here is positive.
To compute $I_n$, I tried an integration by parts (using that a primitive of $ln^2 x$ is $x(ln^2 x-2ln x)$) to obtain the relation $$I_n = frac{-2}{n+1}int_0^1 x^nln x.$$
Let us call this latter integral $J_n$. Once again with an integration by parts, you can show that $J_n = frac{-1}{(n+1)^2}$, and thus conclude.
$endgroup$
Everything you did is good. Indeed, it suffices to show that $I_n:=int_0^1 x^n ln^2 x = frac{2}{(n+1)^3}$ to conclude. The interversion $int / Sigma$ is possible as everything here is positive.
To compute $I_n$, I tried an integration by parts (using that a primitive of $ln^2 x$ is $x(ln^2 x-2ln x)$) to obtain the relation $$I_n = frac{-2}{n+1}int_0^1 x^nln x.$$
Let us call this latter integral $J_n$. Once again with an integration by parts, you can show that $J_n = frac{-1}{(n+1)^2}$, and thus conclude.
answered Aug 4 '16 at 20:55
VincentVincent
293110
293110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1882695%2ffind-int-01-frac-ln21-xx-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What's up with everyone usign displaystyle lately? We don't need that anywhere, especially in the title
$endgroup$
– Yuriy S
Aug 4 '16 at 21:01
$begingroup$
@You'reInMyEye That's just how I write integrals. Chalk it up to me not having a lot of experience on Math.SE and not knowing all of the minutiae that you all prefer. My apologies.
$endgroup$
– Arcturus
Aug 4 '16 at 21:09
$begingroup$
Eridan, that was nothing personal, more a comment for general public. I edited at least three displaystyle titles today. I'm not sure myself why it's not allowed, but I think it may cause some problems with browsing question and search
$endgroup$
– Yuriy S
Aug 4 '16 at 21:11
$begingroup$
@You'reInMyEye MSE strongly recommends ( in some documentation ) to avoid $texttt{displaystyle}$ in the title.
$endgroup$
– Felix Marin
Aug 4 '16 at 23:35
$begingroup$
Is $ln^2 x$ a standard notation?
$endgroup$
– StubbornAtom
Aug 5 '16 at 4:48