Inequality between Frobenius norm and L2 Norm
$begingroup$
$u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
Prove
$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$
$left| right| _ { F }$ is Frobenius norm defined for matrix.
$$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
$$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$
But when I tried to expand it, it seems hard to rearrange.
Any ideas?
probability matrices statistics inequality
$endgroup$
add a comment |
$begingroup$
$u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
Prove
$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$
$left| right| _ { F }$ is Frobenius norm defined for matrix.
$$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
$$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$
But when I tried to expand it, it seems hard to rearrange.
Any ideas?
probability matrices statistics inequality
$endgroup$
add a comment |
$begingroup$
$u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
Prove
$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$
$left| right| _ { F }$ is Frobenius norm defined for matrix.
$$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
$$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$
But when I tried to expand it, it seems hard to rearrange.
Any ideas?
probability matrices statistics inequality
$endgroup$
$u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
Prove
$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$
$left| right| _ { F }$ is Frobenius norm defined for matrix.
$$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
$$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$
But when I tried to expand it, it seems hard to rearrange.
Any ideas?
probability matrices statistics inequality
probability matrices statistics inequality
edited Jan 11 at 19:43
Bernard
119k740113
119k740113
asked Jan 11 at 19:25
DylonDylon
113
113
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We can expand each of the terms as follows. The Frobenius norm:
$$
|uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
= operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
= 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
= 2[1 - (u^Tw)(v^Tz)]
$$
The vector norm:
$$
|u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
$$
To compare these two, we make the following observation:
$$
[1 - u^Tw][1 - v^Tz] geq 0 implies\
1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
(u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
$$
$endgroup$
$begingroup$
Very clear thanks.
$endgroup$
– Dylon
Jan 12 at 6:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070253%2finequality-between-frobenius-norm-and-l2-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can expand each of the terms as follows. The Frobenius norm:
$$
|uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
= operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
= 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
= 2[1 - (u^Tw)(v^Tz)]
$$
The vector norm:
$$
|u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
$$
To compare these two, we make the following observation:
$$
[1 - u^Tw][1 - v^Tz] geq 0 implies\
1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
(u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
$$
$endgroup$
$begingroup$
Very clear thanks.
$endgroup$
– Dylon
Jan 12 at 6:23
add a comment |
$begingroup$
We can expand each of the terms as follows. The Frobenius norm:
$$
|uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
= operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
= 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
= 2[1 - (u^Tw)(v^Tz)]
$$
The vector norm:
$$
|u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
$$
To compare these two, we make the following observation:
$$
[1 - u^Tw][1 - v^Tz] geq 0 implies\
1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
(u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
$$
$endgroup$
$begingroup$
Very clear thanks.
$endgroup$
– Dylon
Jan 12 at 6:23
add a comment |
$begingroup$
We can expand each of the terms as follows. The Frobenius norm:
$$
|uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
= operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
= 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
= 2[1 - (u^Tw)(v^Tz)]
$$
The vector norm:
$$
|u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
$$
To compare these two, we make the following observation:
$$
[1 - u^Tw][1 - v^Tz] geq 0 implies\
1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
(u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
$$
$endgroup$
We can expand each of the terms as follows. The Frobenius norm:
$$
|uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
= operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
= 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
= 2[1 - (u^Tw)(v^Tz)]
$$
The vector norm:
$$
|u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
$$
To compare these two, we make the following observation:
$$
[1 - u^Tw][1 - v^Tz] geq 0 implies\
1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
(u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
$$
answered Jan 11 at 19:46
OmnomnomnomOmnomnomnom
127k790178
127k790178
$begingroup$
Very clear thanks.
$endgroup$
– Dylon
Jan 12 at 6:23
add a comment |
$begingroup$
Very clear thanks.
$endgroup$
– Dylon
Jan 12 at 6:23
$begingroup$
Very clear thanks.
$endgroup$
– Dylon
Jan 12 at 6:23
$begingroup$
Very clear thanks.
$endgroup$
– Dylon
Jan 12 at 6:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070253%2finequality-between-frobenius-norm-and-l2-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown