Inequality between Frobenius norm and L2 Norm












1












$begingroup$


$u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
Prove
$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$



$left| right| _ { F }$ is Frobenius norm defined for matrix.



$$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
$$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$

But when I tried to expand it, it seems hard to rearrange.



Any ideas?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    $u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
    Prove
    $left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$



    $left| right| _ { F }$ is Frobenius norm defined for matrix.



    $$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
    I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
    $$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$

    But when I tried to expand it, it seems hard to rearrange.



    Any ideas?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      $u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
      Prove
      $left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$



      $left| right| _ { F }$ is Frobenius norm defined for matrix.



      $$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
      I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
      $$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$

      But when I tried to expand it, it seems hard to rearrange.



      Any ideas?










      share|cite|improve this question











      $endgroup$




      $u , w in S ^ { n - 1 }$ and $v , z in S ^ { m - 1 }$ which means u,w are unit vector in $R^n$, v,z are unit vector in $R^m$
      Prove
      $left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 } leq | u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 }$



      $left| right| _ { F }$ is Frobenius norm defined for matrix.



      $$left| u v ^ { mathrm { T } } - w z ^ { top } right| _ { F } ^ { 2 }=sum _ { i , j } left( u _ { j } v _ { i } - w _ { j } z _ { i } right) ^ { 2 }$$
      I tried to first get the lower bound of right hand side, so that we can have product unit between two separate vectors:
      $$| u - w | _ { 2 } ^ { 2 } + | v - z | _ { 2 } ^ { 2 } geq 2| u - w | _ { 2 } | v - z | _ { 2 }$$

      But when I tried to expand it, it seems hard to rearrange.



      Any ideas?







      probability matrices statistics inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 19:43









      Bernard

      119k740113




      119k740113










      asked Jan 11 at 19:25









      DylonDylon

      113




      113






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          We can expand each of the terms as follows. The Frobenius norm:
          $$
          |uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
          = operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
          = 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
          = 2[1 - (u^Tw)(v^Tz)]
          $$

          The vector norm:
          $$
          |u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
          $$

          To compare these two, we make the following observation:
          $$
          [1 - u^Tw][1 - v^Tz] geq 0 implies\
          1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
          (u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Very clear thanks.
            $endgroup$
            – Dylon
            Jan 12 at 6:23











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070253%2finequality-between-frobenius-norm-and-l2-norm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          We can expand each of the terms as follows. The Frobenius norm:
          $$
          |uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
          = operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
          = 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
          = 2[1 - (u^Tw)(v^Tz)]
          $$

          The vector norm:
          $$
          |u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
          $$

          To compare these two, we make the following observation:
          $$
          [1 - u^Tw][1 - v^Tz] geq 0 implies\
          1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
          (u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Very clear thanks.
            $endgroup$
            – Dylon
            Jan 12 at 6:23
















          0












          $begingroup$

          We can expand each of the terms as follows. The Frobenius norm:
          $$
          |uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
          = operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
          = 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
          = 2[1 - (u^Tw)(v^Tz)]
          $$

          The vector norm:
          $$
          |u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
          $$

          To compare these two, we make the following observation:
          $$
          [1 - u^Tw][1 - v^Tz] geq 0 implies\
          1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
          (u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Very clear thanks.
            $endgroup$
            – Dylon
            Jan 12 at 6:23














          0












          0








          0





          $begingroup$

          We can expand each of the terms as follows. The Frobenius norm:
          $$
          |uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
          = operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
          = 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
          = 2[1 - (u^Tw)(v^Tz)]
          $$

          The vector norm:
          $$
          |u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
          $$

          To compare these two, we make the following observation:
          $$
          [1 - u^Tw][1 - v^Tz] geq 0 implies\
          1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
          (u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
          $$






          share|cite|improve this answer









          $endgroup$



          We can expand each of the terms as follows. The Frobenius norm:
          $$
          |uv^T - wz^T|_F^2 = operatorname{tr}[(uv^T - wz^T)^T(uv^T - wz^T)]\
          = operatorname{tr}[vv^T - (u^Tw)vz^T - (w^Tu)zv^T + zz^T]\
          = 2 - (u^Tw)operatorname{tr}[vz^T + zv^T]\
          = 2[1 - (u^Tw)(v^Tz)]
          $$

          The vector norm:
          $$
          |u-w|^2 + |v-z|^2 = [2 - 2(u^Tw)] + [2 - 2(v^Tz)] = 2[1 - (u^Tw + v^Tz - 1)]
          $$

          To compare these two, we make the following observation:
          $$
          [1 - u^Tw][1 - v^Tz] geq 0 implies\
          1 - u^Tw - v^Tz + (u^Tw)(v^Tz) geq 0 implies\
          (u^Tw)(v^Tz) geq (u^Tw) + (v^Tz) - 1
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 19:46









          OmnomnomnomOmnomnomnom

          127k790178




          127k790178












          • $begingroup$
            Very clear thanks.
            $endgroup$
            – Dylon
            Jan 12 at 6:23


















          • $begingroup$
            Very clear thanks.
            $endgroup$
            – Dylon
            Jan 12 at 6:23
















          $begingroup$
          Very clear thanks.
          $endgroup$
          – Dylon
          Jan 12 at 6:23




          $begingroup$
          Very clear thanks.
          $endgroup$
          – Dylon
          Jan 12 at 6:23


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070253%2finequality-between-frobenius-norm-and-l2-norm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          What does “Dominus providebit” mean?

          Antonio Litta Visconti Arese