Equation of motion in a disk and slider system












1














I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)



enter image description here



I have used relative velocity principle to calculate velocity of slider A:
$$vec V_C=Rdottheta hat i $$
$$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
$$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
Therfore:
$$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
And as we know the slider has no vertical motion so:
$$Rdotthetacostheta+2.5Rdotphicosphi =0$$
$$dotthetacostheta=-2.5dotphicosphi $$
Therefore:
$$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
From geometry we know:
$$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
$$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
If we want the acceleration in point A:
$$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
So the equation of motion can be derived using newton rule:
$$sum vec F=mvec a $$
$$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$



Is my solution correct?










share|cite|improve this question





























    1














    I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)



    enter image description here



    I have used relative velocity principle to calculate velocity of slider A:
    $$vec V_C=Rdottheta hat i $$
    $$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
    $$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
    Therfore:
    $$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
    And as we know the slider has no vertical motion so:
    $$Rdotthetacostheta+2.5Rdotphicosphi =0$$
    $$dotthetacostheta=-2.5dotphicosphi $$
    Therefore:
    $$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
    From geometry we know:
    $$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
    $$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
    If we want the acceleration in point A:
    $$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
    So the equation of motion can be derived using newton rule:
    $$sum vec F=mvec a $$
    $$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$



    Is my solution correct?










    share|cite|improve this question



























      1












      1








      1


      1





      I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)



      enter image description here



      I have used relative velocity principle to calculate velocity of slider A:
      $$vec V_C=Rdottheta hat i $$
      $$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
      $$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
      Therfore:
      $$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
      And as we know the slider has no vertical motion so:
      $$Rdotthetacostheta+2.5Rdotphicosphi =0$$
      $$dotthetacostheta=-2.5dotphicosphi $$
      Therefore:
      $$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
      From geometry we know:
      $$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
      $$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
      If we want the acceleration in point A:
      $$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
      So the equation of motion can be derived using newton rule:
      $$sum vec F=mvec a $$
      $$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$



      Is my solution correct?










      share|cite|improve this question















      I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)



      enter image description here



      I have used relative velocity principle to calculate velocity of slider A:
      $$vec V_C=Rdottheta hat i $$
      $$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
      $$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
      Therfore:
      $$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
      And as we know the slider has no vertical motion so:
      $$Rdotthetacostheta+2.5Rdotphicosphi =0$$
      $$dotthetacostheta=-2.5dotphicosphi $$
      Therefore:
      $$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
      From geometry we know:
      $$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
      $$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
      If we want the acceleration in point A:
      $$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
      So the equation of motion can be derived using newton rule:
      $$sum vec F=mvec a $$
      $$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$



      Is my solution correct?







      dynamical-systems






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 6 at 18:29







      H.H

















      asked Jan 6 at 11:48









      H.HH.H

      1466




      1466






















          1 Answer
          1






          active

          oldest

          votes


















          1














          It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
          $$V=0$$
          $$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
          $$I=frac{3}{2}MR^2$$



          if your answer for velocity of the slider is correct we can write:
          $$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$



          so if you use Lagrange equations, you can find the answer:
          $$L=T-V$$



          $${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$






          share|cite|improve this answer





















          • Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
            – H.H
            Jan 6 at 21:57











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063759%2fequation-of-motion-in-a-disk-and-slider-system%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
          $$V=0$$
          $$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
          $$I=frac{3}{2}MR^2$$



          if your answer for velocity of the slider is correct we can write:
          $$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$



          so if you use Lagrange equations, you can find the answer:
          $$L=T-V$$



          $${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$






          share|cite|improve this answer





















          • Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
            – H.H
            Jan 6 at 21:57
















          1














          It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
          $$V=0$$
          $$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
          $$I=frac{3}{2}MR^2$$



          if your answer for velocity of the slider is correct we can write:
          $$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$



          so if you use Lagrange equations, you can find the answer:
          $$L=T-V$$



          $${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$






          share|cite|improve this answer





















          • Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
            – H.H
            Jan 6 at 21:57














          1












          1








          1






          It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
          $$V=0$$
          $$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
          $$I=frac{3}{2}MR^2$$



          if your answer for velocity of the slider is correct we can write:
          $$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$



          so if you use Lagrange equations, you can find the answer:
          $$L=T-V$$



          $${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$






          share|cite|improve this answer












          It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
          $$V=0$$
          $$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
          $$I=frac{3}{2}MR^2$$



          if your answer for velocity of the slider is correct we can write:
          $$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$



          so if you use Lagrange equations, you can find the answer:
          $$L=T-V$$



          $${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 6 at 21:48









          HarryHarry

          283




          283












          • Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
            – H.H
            Jan 6 at 21:57


















          • Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
            – H.H
            Jan 6 at 21:57
















          Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
          – H.H
          Jan 6 at 21:57




          Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
          – H.H
          Jan 6 at 21:57


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063759%2fequation-of-motion-in-a-disk-and-slider-system%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          The Binding of Isaac: Rebirth/Afterbirth

          Mario Kart Wii

          Dobbiaco