Why is $cos(i)>1$?

Multi tool use
I always thought that cosine only ranges from $-1$ to $1$. But, I found out that
$$cos(i)=frac12left(e+frac{1}{e}right)$$
which is certainly greater than $1$. Why is that?
trigonometry complex-numbers
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
|
show 1 more comment
I always thought that cosine only ranges from $-1$ to $1$. But, I found out that
$$cos(i)=frac12left(e+frac{1}{e}right)$$
which is certainly greater than $1$. Why is that?
trigonometry complex-numbers
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
4
$-1lecos{x}le1$ if $x$ is real. $cos{z}$ is unbounded if $z$ is complex.
– saulspatz
2 days ago
3
Complex numbers typically break rules that were established within the confines of the real numbers.
– Blue
2 days ago
2
Cosine has a geometric interpretation as a function on $mathbb{R}$, but it is also useful to extend it to a function on $mathbb{C}$. There are all kinds of extensions one could define, but it's very nice to preserve analyticity. This is easily accomplished by using the series expansion $cos(z)=sum_{n=0}^inftyfrac{(-1)^nz^{2n}}{(2n)!}$. In fact, someone correct me if I'm wrong, but I'm pretty sure that's the unique analytic extension to $mathbb{C}$. From this falls out all kinds of nice identities like $cos(z)=(e^{iz}+e^{-iz})/2$.
– Ben W
2 days ago
If $cos(z)$ where bounded, it would be constant.
– NewMath
2 days ago
1
Not a bad question, but what do you actually know about complex trigonometric functions? What do you know about complex functions in general? Do you know definitions of exponential and trigonometric functions by their power series? By differential equations?
– Ennar
2 days ago
|
show 1 more comment
I always thought that cosine only ranges from $-1$ to $1$. But, I found out that
$$cos(i)=frac12left(e+frac{1}{e}right)$$
which is certainly greater than $1$. Why is that?
trigonometry complex-numbers
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
I always thought that cosine only ranges from $-1$ to $1$. But, I found out that
$$cos(i)=frac12left(e+frac{1}{e}right)$$
which is certainly greater than $1$. Why is that?
trigonometry complex-numbers
trigonometry complex-numbers
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
edited 2 days ago


Blue
47.7k870151
47.7k870151
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
asked 2 days ago
Math LoverMath Lover
546
546
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Math Lover is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
4
$-1lecos{x}le1$ if $x$ is real. $cos{z}$ is unbounded if $z$ is complex.
– saulspatz
2 days ago
3
Complex numbers typically break rules that were established within the confines of the real numbers.
– Blue
2 days ago
2
Cosine has a geometric interpretation as a function on $mathbb{R}$, but it is also useful to extend it to a function on $mathbb{C}$. There are all kinds of extensions one could define, but it's very nice to preserve analyticity. This is easily accomplished by using the series expansion $cos(z)=sum_{n=0}^inftyfrac{(-1)^nz^{2n}}{(2n)!}$. In fact, someone correct me if I'm wrong, but I'm pretty sure that's the unique analytic extension to $mathbb{C}$. From this falls out all kinds of nice identities like $cos(z)=(e^{iz}+e^{-iz})/2$.
– Ben W
2 days ago
If $cos(z)$ where bounded, it would be constant.
– NewMath
2 days ago
1
Not a bad question, but what do you actually know about complex trigonometric functions? What do you know about complex functions in general? Do you know definitions of exponential and trigonometric functions by their power series? By differential equations?
– Ennar
2 days ago
|
show 1 more comment
4
$-1lecos{x}le1$ if $x$ is real. $cos{z}$ is unbounded if $z$ is complex.
– saulspatz
2 days ago
3
Complex numbers typically break rules that were established within the confines of the real numbers.
– Blue
2 days ago
2
Cosine has a geometric interpretation as a function on $mathbb{R}$, but it is also useful to extend it to a function on $mathbb{C}$. There are all kinds of extensions one could define, but it's very nice to preserve analyticity. This is easily accomplished by using the series expansion $cos(z)=sum_{n=0}^inftyfrac{(-1)^nz^{2n}}{(2n)!}$. In fact, someone correct me if I'm wrong, but I'm pretty sure that's the unique analytic extension to $mathbb{C}$. From this falls out all kinds of nice identities like $cos(z)=(e^{iz}+e^{-iz})/2$.
– Ben W
2 days ago
If $cos(z)$ where bounded, it would be constant.
– NewMath
2 days ago
1
Not a bad question, but what do you actually know about complex trigonometric functions? What do you know about complex functions in general? Do you know definitions of exponential and trigonometric functions by their power series? By differential equations?
– Ennar
2 days ago
4
4
$-1lecos{x}le1$ if $x$ is real. $cos{z}$ is unbounded if $z$ is complex.
– saulspatz
2 days ago
$-1lecos{x}le1$ if $x$ is real. $cos{z}$ is unbounded if $z$ is complex.
– saulspatz
2 days ago
3
3
Complex numbers typically break rules that were established within the confines of the real numbers.
– Blue
2 days ago
Complex numbers typically break rules that were established within the confines of the real numbers.
– Blue
2 days ago
2
2
Cosine has a geometric interpretation as a function on $mathbb{R}$, but it is also useful to extend it to a function on $mathbb{C}$. There are all kinds of extensions one could define, but it's very nice to preserve analyticity. This is easily accomplished by using the series expansion $cos(z)=sum_{n=0}^inftyfrac{(-1)^nz^{2n}}{(2n)!}$. In fact, someone correct me if I'm wrong, but I'm pretty sure that's the unique analytic extension to $mathbb{C}$. From this falls out all kinds of nice identities like $cos(z)=(e^{iz}+e^{-iz})/2$.
– Ben W
2 days ago
Cosine has a geometric interpretation as a function on $mathbb{R}$, but it is also useful to extend it to a function on $mathbb{C}$. There are all kinds of extensions one could define, but it's very nice to preserve analyticity. This is easily accomplished by using the series expansion $cos(z)=sum_{n=0}^inftyfrac{(-1)^nz^{2n}}{(2n)!}$. In fact, someone correct me if I'm wrong, but I'm pretty sure that's the unique analytic extension to $mathbb{C}$. From this falls out all kinds of nice identities like $cos(z)=(e^{iz}+e^{-iz})/2$.
– Ben W
2 days ago
If $cos(z)$ where bounded, it would be constant.
– NewMath
2 days ago
If $cos(z)$ where bounded, it would be constant.
– NewMath
2 days ago
1
1
Not a bad question, but what do you actually know about complex trigonometric functions? What do you know about complex functions in general? Do you know definitions of exponential and trigonometric functions by their power series? By differential equations?
– Ennar
2 days ago
Not a bad question, but what do you actually know about complex trigonometric functions? What do you know about complex functions in general? Do you know definitions of exponential and trigonometric functions by their power series? By differential equations?
– Ennar
2 days ago
|
show 1 more comment
5 Answers
5
active
oldest
votes
The general definition of $cos(z)$ is
$$cos(z)=frac{{e^{iz}}+e^{-iz}}{2}$$
When you plug in complex numbers into $cos(z$), you can get values greater than $1$ or less than $-1$
Can you prove this?
– Math Lover
2 days ago
Sure, do you want me to add the proof as part of the answer?
– Larry
2 days ago
1
@MathLover: If you want to know where the value of $cos(i)$ comes from, then you should say so in your question. As it is, your question seems to be simply about why the value is unexpectedly large.
– Blue
2 days ago
@Math Lover and anyone else reading, also you can come to this formula by trying to calculate cos(i) from Euler's formula, or just come to it visually. I (think) it's valid because it's an analytic continuation. At z=ix you get the average of the graph $e^x$ and the same graph flipped over the y axis, which isn't bounded. Just try some sort of large values or set its absolute value greater than one and solve algebraically.
– Benjamin Thoburn
2 days ago
1
@Math Lover to look deeper into this topic, look into hyperbolic trig. cos(ix)=cosh(x). We define a trig function as circular because it parametrizes a circle. Now, just because you put an imaginary input into a trig function doesn't mean it's not a trig function, but then it parametrizes the shape of a hyperbola and is a hyperbolic trig function. sin(ix)=i sinh(x). Putting in an imaginary angle ix gives the hyperbolic version of the trigonometric function and tanh, sech, etc satisfy the same relations to the other hyperbolic functions. Hyperbolic angles are better called imaginary and on cont
– Benjamin Thoburn
2 days ago
|
show 1 more comment
It's true that the cosine of a real number must be between $-1$ and $1$, but this is not true for the cosine of a complex number. In fact, complex-differentiable functions can never be bounded (unless they are constant).
Here is an analogy, if you like. Let $f(x) = x^2$. Then we learn some rule that $f(x) geq 0$ for all $x$. But wait a second, $f(i)$ is negative. There's no scandal, since $i$ is not a real number.
2
+1 for "There's no scandal".
– Ennar
2 days ago
4
To be precise: non-constant complex-differentiable functions in $Bbb C$ can not be bounded.
– Martin R
2 days ago
add a comment |
The function $cos z$ belongs in the interval $left[-1,1 right]$ when $z$ is a real number, not necessarily when $z$ is a complex number. An example of this is $cos i > 1$, as you correctly pointed out.
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
Here's what happening visually: cosh is essentially cosine with domain of imaginary numbers, as I said in the comments. Cosine and sine trace the unit circle, and COSH (the specific one you asked about) and sinh for the unit hyperbola. The circle parametrization functions (sin and cos) have range between $-1$ and $1$, whereas the unit hyperbola ($x^2-y^2=1$) is unbounded. You could look up these graphs to see this or even deeper see their shape through their relation to conic sections. So that's some visual intuition if want a reason whilst skipping all the knarly mindless algebra.
*If you continue the graph of the unit circle, putting in outputs outside the unit circles range and getting out imaginary numbers, it traces the unit hyperbola. And it sort of makes sense that if a real angle gives the circle, a hyperbola might come from something imaginary. Anyways, there are also other reasons this particular hyperbola is considered "unit" too. cosh and sinh parametrize the unit hyperbola because subbing the cos and sin for a function of their hyperbolic counterparts in the identity $cos^2(x)+sin^2(x)=1$ you get $cosh^2(x)-sinh^2(x)=1$, which is why the hyperbolic sine and cosine parametrize the unit hyperbola, which again is $x^2-y^2=1$, letting x=cosh(t) and y=sinh(t).
add a comment |
Hint
Use the identity$$cos(x+iy)=cos xcosh y-isin xsinh y$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Math Lover is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062963%2fwhy-is-cosi1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
The general definition of $cos(z)$ is
$$cos(z)=frac{{e^{iz}}+e^{-iz}}{2}$$
When you plug in complex numbers into $cos(z$), you can get values greater than $1$ or less than $-1$
Can you prove this?
– Math Lover
2 days ago
Sure, do you want me to add the proof as part of the answer?
– Larry
2 days ago
1
@MathLover: If you want to know where the value of $cos(i)$ comes from, then you should say so in your question. As it is, your question seems to be simply about why the value is unexpectedly large.
– Blue
2 days ago
@Math Lover and anyone else reading, also you can come to this formula by trying to calculate cos(i) from Euler's formula, or just come to it visually. I (think) it's valid because it's an analytic continuation. At z=ix you get the average of the graph $e^x$ and the same graph flipped over the y axis, which isn't bounded. Just try some sort of large values or set its absolute value greater than one and solve algebraically.
– Benjamin Thoburn
2 days ago
1
@Math Lover to look deeper into this topic, look into hyperbolic trig. cos(ix)=cosh(x). We define a trig function as circular because it parametrizes a circle. Now, just because you put an imaginary input into a trig function doesn't mean it's not a trig function, but then it parametrizes the shape of a hyperbola and is a hyperbolic trig function. sin(ix)=i sinh(x). Putting in an imaginary angle ix gives the hyperbolic version of the trigonometric function and tanh, sech, etc satisfy the same relations to the other hyperbolic functions. Hyperbolic angles are better called imaginary and on cont
– Benjamin Thoburn
2 days ago
|
show 1 more comment
The general definition of $cos(z)$ is
$$cos(z)=frac{{e^{iz}}+e^{-iz}}{2}$$
When you plug in complex numbers into $cos(z$), you can get values greater than $1$ or less than $-1$
Can you prove this?
– Math Lover
2 days ago
Sure, do you want me to add the proof as part of the answer?
– Larry
2 days ago
1
@MathLover: If you want to know where the value of $cos(i)$ comes from, then you should say so in your question. As it is, your question seems to be simply about why the value is unexpectedly large.
– Blue
2 days ago
@Math Lover and anyone else reading, also you can come to this formula by trying to calculate cos(i) from Euler's formula, or just come to it visually. I (think) it's valid because it's an analytic continuation. At z=ix you get the average of the graph $e^x$ and the same graph flipped over the y axis, which isn't bounded. Just try some sort of large values or set its absolute value greater than one and solve algebraically.
– Benjamin Thoburn
2 days ago
1
@Math Lover to look deeper into this topic, look into hyperbolic trig. cos(ix)=cosh(x). We define a trig function as circular because it parametrizes a circle. Now, just because you put an imaginary input into a trig function doesn't mean it's not a trig function, but then it parametrizes the shape of a hyperbola and is a hyperbolic trig function. sin(ix)=i sinh(x). Putting in an imaginary angle ix gives the hyperbolic version of the trigonometric function and tanh, sech, etc satisfy the same relations to the other hyperbolic functions. Hyperbolic angles are better called imaginary and on cont
– Benjamin Thoburn
2 days ago
|
show 1 more comment
The general definition of $cos(z)$ is
$$cos(z)=frac{{e^{iz}}+e^{-iz}}{2}$$
When you plug in complex numbers into $cos(z$), you can get values greater than $1$ or less than $-1$
The general definition of $cos(z)$ is
$$cos(z)=frac{{e^{iz}}+e^{-iz}}{2}$$
When you plug in complex numbers into $cos(z$), you can get values greater than $1$ or less than $-1$
answered 2 days ago


LarryLarry
1,9672823
1,9672823
Can you prove this?
– Math Lover
2 days ago
Sure, do you want me to add the proof as part of the answer?
– Larry
2 days ago
1
@MathLover: If you want to know where the value of $cos(i)$ comes from, then you should say so in your question. As it is, your question seems to be simply about why the value is unexpectedly large.
– Blue
2 days ago
@Math Lover and anyone else reading, also you can come to this formula by trying to calculate cos(i) from Euler's formula, or just come to it visually. I (think) it's valid because it's an analytic continuation. At z=ix you get the average of the graph $e^x$ and the same graph flipped over the y axis, which isn't bounded. Just try some sort of large values or set its absolute value greater than one and solve algebraically.
– Benjamin Thoburn
2 days ago
1
@Math Lover to look deeper into this topic, look into hyperbolic trig. cos(ix)=cosh(x). We define a trig function as circular because it parametrizes a circle. Now, just because you put an imaginary input into a trig function doesn't mean it's not a trig function, but then it parametrizes the shape of a hyperbola and is a hyperbolic trig function. sin(ix)=i sinh(x). Putting in an imaginary angle ix gives the hyperbolic version of the trigonometric function and tanh, sech, etc satisfy the same relations to the other hyperbolic functions. Hyperbolic angles are better called imaginary and on cont
– Benjamin Thoburn
2 days ago
|
show 1 more comment
Can you prove this?
– Math Lover
2 days ago
Sure, do you want me to add the proof as part of the answer?
– Larry
2 days ago
1
@MathLover: If you want to know where the value of $cos(i)$ comes from, then you should say so in your question. As it is, your question seems to be simply about why the value is unexpectedly large.
– Blue
2 days ago
@Math Lover and anyone else reading, also you can come to this formula by trying to calculate cos(i) from Euler's formula, or just come to it visually. I (think) it's valid because it's an analytic continuation. At z=ix you get the average of the graph $e^x$ and the same graph flipped over the y axis, which isn't bounded. Just try some sort of large values or set its absolute value greater than one and solve algebraically.
– Benjamin Thoburn
2 days ago
1
@Math Lover to look deeper into this topic, look into hyperbolic trig. cos(ix)=cosh(x). We define a trig function as circular because it parametrizes a circle. Now, just because you put an imaginary input into a trig function doesn't mean it's not a trig function, but then it parametrizes the shape of a hyperbola and is a hyperbolic trig function. sin(ix)=i sinh(x). Putting in an imaginary angle ix gives the hyperbolic version of the trigonometric function and tanh, sech, etc satisfy the same relations to the other hyperbolic functions. Hyperbolic angles are better called imaginary and on cont
– Benjamin Thoburn
2 days ago
Can you prove this?
– Math Lover
2 days ago
Can you prove this?
– Math Lover
2 days ago
Sure, do you want me to add the proof as part of the answer?
– Larry
2 days ago
Sure, do you want me to add the proof as part of the answer?
– Larry
2 days ago
1
1
@MathLover: If you want to know where the value of $cos(i)$ comes from, then you should say so in your question. As it is, your question seems to be simply about why the value is unexpectedly large.
– Blue
2 days ago
@MathLover: If you want to know where the value of $cos(i)$ comes from, then you should say so in your question. As it is, your question seems to be simply about why the value is unexpectedly large.
– Blue
2 days ago
@Math Lover and anyone else reading, also you can come to this formula by trying to calculate cos(i) from Euler's formula, or just come to it visually. I (think) it's valid because it's an analytic continuation. At z=ix you get the average of the graph $e^x$ and the same graph flipped over the y axis, which isn't bounded. Just try some sort of large values or set its absolute value greater than one and solve algebraically.
– Benjamin Thoburn
2 days ago
@Math Lover and anyone else reading, also you can come to this formula by trying to calculate cos(i) from Euler's formula, or just come to it visually. I (think) it's valid because it's an analytic continuation. At z=ix you get the average of the graph $e^x$ and the same graph flipped over the y axis, which isn't bounded. Just try some sort of large values or set its absolute value greater than one and solve algebraically.
– Benjamin Thoburn
2 days ago
1
1
@Math Lover to look deeper into this topic, look into hyperbolic trig. cos(ix)=cosh(x). We define a trig function as circular because it parametrizes a circle. Now, just because you put an imaginary input into a trig function doesn't mean it's not a trig function, but then it parametrizes the shape of a hyperbola and is a hyperbolic trig function. sin(ix)=i sinh(x). Putting in an imaginary angle ix gives the hyperbolic version of the trigonometric function and tanh, sech, etc satisfy the same relations to the other hyperbolic functions. Hyperbolic angles are better called imaginary and on cont
– Benjamin Thoburn
2 days ago
@Math Lover to look deeper into this topic, look into hyperbolic trig. cos(ix)=cosh(x). We define a trig function as circular because it parametrizes a circle. Now, just because you put an imaginary input into a trig function doesn't mean it's not a trig function, but then it parametrizes the shape of a hyperbola and is a hyperbolic trig function. sin(ix)=i sinh(x). Putting in an imaginary angle ix gives the hyperbolic version of the trigonometric function and tanh, sech, etc satisfy the same relations to the other hyperbolic functions. Hyperbolic angles are better called imaginary and on cont
– Benjamin Thoburn
2 days ago
|
show 1 more comment
It's true that the cosine of a real number must be between $-1$ and $1$, but this is not true for the cosine of a complex number. In fact, complex-differentiable functions can never be bounded (unless they are constant).
Here is an analogy, if you like. Let $f(x) = x^2$. Then we learn some rule that $f(x) geq 0$ for all $x$. But wait a second, $f(i)$ is negative. There's no scandal, since $i$ is not a real number.
2
+1 for "There's no scandal".
– Ennar
2 days ago
4
To be precise: non-constant complex-differentiable functions in $Bbb C$ can not be bounded.
– Martin R
2 days ago
add a comment |
It's true that the cosine of a real number must be between $-1$ and $1$, but this is not true for the cosine of a complex number. In fact, complex-differentiable functions can never be bounded (unless they are constant).
Here is an analogy, if you like. Let $f(x) = x^2$. Then we learn some rule that $f(x) geq 0$ for all $x$. But wait a second, $f(i)$ is negative. There's no scandal, since $i$ is not a real number.
2
+1 for "There's no scandal".
– Ennar
2 days ago
4
To be precise: non-constant complex-differentiable functions in $Bbb C$ can not be bounded.
– Martin R
2 days ago
add a comment |
It's true that the cosine of a real number must be between $-1$ and $1$, but this is not true for the cosine of a complex number. In fact, complex-differentiable functions can never be bounded (unless they are constant).
Here is an analogy, if you like. Let $f(x) = x^2$. Then we learn some rule that $f(x) geq 0$ for all $x$. But wait a second, $f(i)$ is negative. There's no scandal, since $i$ is not a real number.
It's true that the cosine of a real number must be between $-1$ and $1$, but this is not true for the cosine of a complex number. In fact, complex-differentiable functions can never be bounded (unless they are constant).
Here is an analogy, if you like. Let $f(x) = x^2$. Then we learn some rule that $f(x) geq 0$ for all $x$. But wait a second, $f(i)$ is negative. There's no scandal, since $i$ is not a real number.
answered 2 days ago
hunterhunter
14.3k22438
14.3k22438
2
+1 for "There's no scandal".
– Ennar
2 days ago
4
To be precise: non-constant complex-differentiable functions in $Bbb C$ can not be bounded.
– Martin R
2 days ago
add a comment |
2
+1 for "There's no scandal".
– Ennar
2 days ago
4
To be precise: non-constant complex-differentiable functions in $Bbb C$ can not be bounded.
– Martin R
2 days ago
2
2
+1 for "There's no scandal".
– Ennar
2 days ago
+1 for "There's no scandal".
– Ennar
2 days ago
4
4
To be precise: non-constant complex-differentiable functions in $Bbb C$ can not be bounded.
– Martin R
2 days ago
To be precise: non-constant complex-differentiable functions in $Bbb C$ can not be bounded.
– Martin R
2 days ago
add a comment |
The function $cos z$ belongs in the interval $left[-1,1 right]$ when $z$ is a real number, not necessarily when $z$ is a complex number. An example of this is $cos i > 1$, as you correctly pointed out.
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
The function $cos z$ belongs in the interval $left[-1,1 right]$ when $z$ is a real number, not necessarily when $z$ is a complex number. An example of this is $cos i > 1$, as you correctly pointed out.
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
The function $cos z$ belongs in the interval $left[-1,1 right]$ when $z$ is a real number, not necessarily when $z$ is a complex number. An example of this is $cos i > 1$, as you correctly pointed out.
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
The function $cos z$ belongs in the interval $left[-1,1 right]$ when $z$ is a real number, not necessarily when $z$ is a complex number. An example of this is $cos i > 1$, as you correctly pointed out.
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
edited 2 days ago
J.G.
23.3k22137
23.3k22137
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
answered 2 days ago
pendermathpendermath
18510
18510
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
pendermath is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
add a comment |
Here's what happening visually: cosh is essentially cosine with domain of imaginary numbers, as I said in the comments. Cosine and sine trace the unit circle, and COSH (the specific one you asked about) and sinh for the unit hyperbola. The circle parametrization functions (sin and cos) have range between $-1$ and $1$, whereas the unit hyperbola ($x^2-y^2=1$) is unbounded. You could look up these graphs to see this or even deeper see their shape through their relation to conic sections. So that's some visual intuition if want a reason whilst skipping all the knarly mindless algebra.
*If you continue the graph of the unit circle, putting in outputs outside the unit circles range and getting out imaginary numbers, it traces the unit hyperbola. And it sort of makes sense that if a real angle gives the circle, a hyperbola might come from something imaginary. Anyways, there are also other reasons this particular hyperbola is considered "unit" too. cosh and sinh parametrize the unit hyperbola because subbing the cos and sin for a function of their hyperbolic counterparts in the identity $cos^2(x)+sin^2(x)=1$ you get $cosh^2(x)-sinh^2(x)=1$, which is why the hyperbolic sine and cosine parametrize the unit hyperbola, which again is $x^2-y^2=1$, letting x=cosh(t) and y=sinh(t).
add a comment |
Here's what happening visually: cosh is essentially cosine with domain of imaginary numbers, as I said in the comments. Cosine and sine trace the unit circle, and COSH (the specific one you asked about) and sinh for the unit hyperbola. The circle parametrization functions (sin and cos) have range between $-1$ and $1$, whereas the unit hyperbola ($x^2-y^2=1$) is unbounded. You could look up these graphs to see this or even deeper see their shape through their relation to conic sections. So that's some visual intuition if want a reason whilst skipping all the knarly mindless algebra.
*If you continue the graph of the unit circle, putting in outputs outside the unit circles range and getting out imaginary numbers, it traces the unit hyperbola. And it sort of makes sense that if a real angle gives the circle, a hyperbola might come from something imaginary. Anyways, there are also other reasons this particular hyperbola is considered "unit" too. cosh and sinh parametrize the unit hyperbola because subbing the cos and sin for a function of their hyperbolic counterparts in the identity $cos^2(x)+sin^2(x)=1$ you get $cosh^2(x)-sinh^2(x)=1$, which is why the hyperbolic sine and cosine parametrize the unit hyperbola, which again is $x^2-y^2=1$, letting x=cosh(t) and y=sinh(t).
add a comment |
Here's what happening visually: cosh is essentially cosine with domain of imaginary numbers, as I said in the comments. Cosine and sine trace the unit circle, and COSH (the specific one you asked about) and sinh for the unit hyperbola. The circle parametrization functions (sin and cos) have range between $-1$ and $1$, whereas the unit hyperbola ($x^2-y^2=1$) is unbounded. You could look up these graphs to see this or even deeper see their shape through their relation to conic sections. So that's some visual intuition if want a reason whilst skipping all the knarly mindless algebra.
*If you continue the graph of the unit circle, putting in outputs outside the unit circles range and getting out imaginary numbers, it traces the unit hyperbola. And it sort of makes sense that if a real angle gives the circle, a hyperbola might come from something imaginary. Anyways, there are also other reasons this particular hyperbola is considered "unit" too. cosh and sinh parametrize the unit hyperbola because subbing the cos and sin for a function of their hyperbolic counterparts in the identity $cos^2(x)+sin^2(x)=1$ you get $cosh^2(x)-sinh^2(x)=1$, which is why the hyperbolic sine and cosine parametrize the unit hyperbola, which again is $x^2-y^2=1$, letting x=cosh(t) and y=sinh(t).
Here's what happening visually: cosh is essentially cosine with domain of imaginary numbers, as I said in the comments. Cosine and sine trace the unit circle, and COSH (the specific one you asked about) and sinh for the unit hyperbola. The circle parametrization functions (sin and cos) have range between $-1$ and $1$, whereas the unit hyperbola ($x^2-y^2=1$) is unbounded. You could look up these graphs to see this or even deeper see their shape through their relation to conic sections. So that's some visual intuition if want a reason whilst skipping all the knarly mindless algebra.
*If you continue the graph of the unit circle, putting in outputs outside the unit circles range and getting out imaginary numbers, it traces the unit hyperbola. And it sort of makes sense that if a real angle gives the circle, a hyperbola might come from something imaginary. Anyways, there are also other reasons this particular hyperbola is considered "unit" too. cosh and sinh parametrize the unit hyperbola because subbing the cos and sin for a function of their hyperbolic counterparts in the identity $cos^2(x)+sin^2(x)=1$ you get $cosh^2(x)-sinh^2(x)=1$, which is why the hyperbolic sine and cosine parametrize the unit hyperbola, which again is $x^2-y^2=1$, letting x=cosh(t) and y=sinh(t).
edited 2 days ago
answered 2 days ago
Benjamin ThoburnBenjamin Thoburn
18911
18911
add a comment |
add a comment |
Hint
Use the identity$$cos(x+iy)=cos xcosh y-isin xsinh y$$
add a comment |
Hint
Use the identity$$cos(x+iy)=cos xcosh y-isin xsinh y$$
add a comment |
Hint
Use the identity$$cos(x+iy)=cos xcosh y-isin xsinh y$$
Hint
Use the identity$$cos(x+iy)=cos xcosh y-isin xsinh y$$
answered 2 days ago


Mostafa AyazMostafa Ayaz
14.1k3937
14.1k3937
add a comment |
add a comment |
Math Lover is a new contributor. Be nice, and check out our Code of Conduct.
Math Lover is a new contributor. Be nice, and check out our Code of Conduct.
Math Lover is a new contributor. Be nice, and check out our Code of Conduct.
Math Lover is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062963%2fwhy-is-cosi1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
62Wz917hzcOZw6L8joaaY Bf2G95hTCBVVONc ip N3b
4
$-1lecos{x}le1$ if $x$ is real. $cos{z}$ is unbounded if $z$ is complex.
– saulspatz
2 days ago
3
Complex numbers typically break rules that were established within the confines of the real numbers.
– Blue
2 days ago
2
Cosine has a geometric interpretation as a function on $mathbb{R}$, but it is also useful to extend it to a function on $mathbb{C}$. There are all kinds of extensions one could define, but it's very nice to preserve analyticity. This is easily accomplished by using the series expansion $cos(z)=sum_{n=0}^inftyfrac{(-1)^nz^{2n}}{(2n)!}$. In fact, someone correct me if I'm wrong, but I'm pretty sure that's the unique analytic extension to $mathbb{C}$. From this falls out all kinds of nice identities like $cos(z)=(e^{iz}+e^{-iz})/2$.
– Ben W
2 days ago
If $cos(z)$ where bounded, it would be constant.
– NewMath
2 days ago
1
Not a bad question, but what do you actually know about complex trigonometric functions? What do you know about complex functions in general? Do you know definitions of exponential and trigonometric functions by their power series? By differential equations?
– Ennar
2 days ago