Is this an unknown pattern in prime numbers?












4














I am trying to figure out if the pattern I've found concerning twin primes is a known pattern or not. It turns out that with every set of twin primes, if the higher of the two numbers is converted to radix 7, and then the individual digits of the number are added together and continually added together until a 1 or 2 digit number is leftover, the number is always equal to 6 mod +1.



The lower of the two numbers is always 6 mod -1 with same calculation.



Examples:



Lower twin (radix 10)/ Lower twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>59 / 113 / 5 / 5</ul>
<ul>71 / 131 / 5 / 5</ul>
<ul>101 / 203 / 5 / 5</ul>
<ul>107 / 212 / 5 / 5</ul>
<ul>137 / 254 / 11 / 5</ul>
<ul>149 / 302 / 5 / 5</ul>
<ul>179 / 344 / 11 / 5</ul>
<ul>191 / 362 / 11 / 5</ul>
<ul>197 / 401 / 5 / 5</ul>
<ul>227 / 443 / 11 / 5</ul>
<ul>239 / 461 / 11 / 5</ul>
<ul>269 / 533 / 11 / 5</ul>
<ul>281 / 551 / 11 / 5</ul>
<ul>311 / 623 / 11 / 5</ul>
<ul>347 / 1004 / 5 / 5</ul>
<ul>419 / 1136 / 11 / 5</ul>
<ul>431 / 1154 / 11 / 5</ul>
<ul>461 / 1226 / 11 / 5</ul>
<ul>521 / 1343 / 11 / 5</ul>
<ul>569 / 1442 / 11 / 5</ul>
<ul>599 / 1514 / 11 / 5</ul>
<ul>617 / 1541 / 11 / 5</ul>
<ul>641 / 1604 / 11 / 5</ul>
<ul>659 / 1631 / 11 / 5</ul>
<ul>809 / 2234 / 11 / 5</ul>
<ul>821 / 2252 / 11 / 5</ul>
<ul>827 / 2261 / 11 / 5</ul>
<ul>857 / 2333 / 11 / 5</ul>
<ul>881 / 2366 / 17 / 5</ul>
<ul>1019 / 2654 / 17 / 5</ul>
<ul>1031 / 3002 / 5 / 5</ul>
<ul>1049 / 3026 / 11 / 5</ul>
<ul>1061 / 3044 / 11 / 5</ul>
<ul>1091 / 3116 / 11 / 5</ul>
<ul>1151 / 3233 / 11 / 5</ul>
<ul>1229 / 3404 / 11 / 5</ul>
<ul>1277 / 3503 / 11 / 5</ul>
<ul>1289 / 3521 / 11 / 5</ul>
<ul>1301 / 3536 / 17 / 5</ul>
<ul>1319 / 3563 / 17 / 5</ul>
<ul>1427 / 4106 / 11 / 5</ul>
<ul>1451 / 4142 / 11 / 5</ul>
<ul>1481 / 4214 / 11 / 5</ul>
<ul>1487 / 4223 / 11 / 5</ul>
<ul>1607 / 4454 / 17 / 5</ul>
<ul>1619 / 4502 / 11 / 5</ul>
<ul>963426767 / 32605664252 / 41 / 5</ul>
<ul>963427259 / 32605665554 / 47 / 5</ul>
<ul>963427301 / 32605665644 / 47 / 5</ul>
<ul>963427559 / 32605666463 / 47 / 5</ul>
<ul>963427919 / 32606000516 / 29 / 5</ul>
<ul>963428021 / 32606001023 / 23 / 5</ul>
<ul>963428099 / 32606001164 / 29 / 5</ul>
<ul>963428561 / 32606002424 / 29 / 5</ul>
<ul>963428861 / 32606003333 / 29 / 5</ul>
<ul>963428957 / 32606003531 / 29 / 5</ul>
<ul>963429167 / 32606004251 / 29 / 5</ul>
<ul>963430019 / 32606006606 / 35 / 5</ul>
<ul>963430079 / 32606010023 / 23 / 5</ul>
<ul>963430289 / 32606010443 / 29 / 5</ul>
<ul>963431177 / 32606013152 / 29 / 5</ul>
<ul>963431321 / 32606013446 / 35 / 5</ul>
<ul>963431477 / 32606014061 / 29 / 5</ul>
<ul>963431717 / 32606014553 / 35 / 5</ul>
<ul>963432131 / 32606016014 / 29 / 5</ul>
<ul>963432917 / 32606021216 / 29 / 5</ul>
<ul>963432989 / 32606021351 / 29 / 5</ul>
<ul>963433319 / 32606022332 / 29 / 5</ul>
<ul>963433439 / 32606022563 / 35 / 5</ul>
<ul>963433697 / 32606023412 / 29 / 5</ul>
<ul>963434411 / 32606025452 / 35 / 5</ul>
<ul>963434579 / 32606026112 / 29 / 5</ul>
<ul>963434609 / 32606026154 / 35 / 5</ul>
<ul>963434891 / 32606030036 / 29 / 5</ul>
<ul>963435227 / 32606031026 / 29 / 5</ul>
<ul>963435491 / 32606031554 / 35 / 5</ul>
<ul>963436037 / 32606033264 / 35 / 5</ul>
<ul>963436601 / 32606035031 / 29 / 5</ul>
<ul>963437261 / 32606036663 / 41 / 5</ul>
<ul>963437399 / 32606040251 / 29 / 5</ul>
<ul>963437927 / 32606041634 / 35 / 5</ul>
<ul>963437939 / 32606041652 / 35 / 5</ul>
<ul>963438017 / 32606042123 / 29 / 5</ul>
<ul>963438041 / 32606042156 / 35 / 5</ul>


Higher twin (radix 10)/ Higher twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>571 / 1444 / 13 / 1</ul>
<ul>601 / 1516 / 13 / 1</ul>
<ul>619 / 1543 / 13 / 1</ul>
<ul>643 / 1606 / 13 / 1</ul>
<ul>661 / 1633 / 13 / 1</ul>
<ul>811 / 2236 / 13 / 1</ul>
<ul>823 / 2254 / 13 / 1</ul>
<ul>829 / 2263 / 13 / 1</ul>
<ul>859 / 2335 / 13 / 1</ul>
<ul>883 / 2401 / 7 / 1</ul>
<ul>1021 / 2656 / 19 / 1</ul>
<ul>1033 / 3004 / 7 / 1</ul>
<ul>1051 / 3031 / 7 / 1</ul>
<ul>1063 / 3046 / 13 / 1</ul>
<ul>1093 / 3121 / 7 / 1</ul>
<ul>1153 / 3235 / 13 / 1</ul>
<ul>1231 / 3406 / 13 / 1</ul>
<ul>1279 / 3505 / 13 / 1</ul>
<ul>1291 / 3523 / 13 / 1</ul>
<ul>1303 / 3541 / 13 / 1</ul>
<ul>1321 / 3565 / 19 / 1</ul>
<ul>1429 / 4111 / 7 / 1</ul>
<ul>1453 / 4144 / 13 / 1</ul>
<ul>1483 / 4216 / 13 / 1</ul>
<ul>961750903 / 32555514331 / 37 / 1</ul>
<ul>961751209 / 32555515246 / 43 / 1</ul>
<ul>961752301 / 32555521366 / 43 / 1</ul>
<ul>961752349 / 32555521465 / 43 / 1</ul>
<ul>961752553 / 32555522206 / 37 / 1</ul>
<ul>961753789 / 32555525623 / 43 / 1</ul>
<ul>961753831 / 32555526013 / 37 / 1</ul>
<ul>961754011 / 32555526361 / 43 / 1</ul>
<ul>961754071 / 32555526505 / 43 / 1</ul>
<ul>961754461 / 32555530603 / 37 / 1</ul>
<ul>961755019 / 32555532331 / 37 / 1</ul>
<ul>961757059 / 32555541304 / 37 / 1</ul>
<ul>961757311 / 32555542114 / 37 / 1</ul>
<ul>961757431 / 32555542345 / 43 / 1</ul>
<ul>961757683 / 32555543155 / 43 / 1</ul>
<ul>961758673 / 32555546101 / 37 / 1</ul>
<ul>961759111 / 32555550265 / 43 / 1</ul>
<ul>961759483 / 32555551336 / 43 / 1</ul>
<ul>961759831 / 32555552344 / 43 / 1</ul>
<ul>961759861 / 32555552416 / 43 / 1</ul>
<ul>961760119 / 32555553235 / 43 / 1</ul>
<ul>961760719 / 32555555053 / 43 / 1</ul>
<ul>961761013 / 32555555653 / 49 / 1</ul>
<ul>961761139 / 32555556223 / 43 / 1</ul>
<ul>961761343 / 32555556634 / 49 / 1</ul>
<ul>961761403 / 32555560051 / 37 / 1</ul>
<ul>961761571 / 32555560411 / 37 / 1</ul>
<ul>961762033 / 32555561641 / 43 / 1</ul>
<ul>961762591 / 32555563366 / 49 / 1</ul>


I have other questions related to prime numbers but first want to see how valid or known this part is before I continue. I am not a mathematician.










share|cite|improve this question




















  • 5




    I think all you are saying here is that if $p$ and $p+2$ are primes then $pequiv-1pmod 6$. That is easy to prove (with the exception of $p=3$).
    – Lord Shark the Unknown
    Jul 1 '17 at 18:54










  • Thanks, I see now that it isn't very novel. In radix 6, all the lower twins would automatically have an ending digit of 5 and the higher twins an ending digit of 1.
    – Troy W
    Jul 1 '17 at 19:11










  • Note that $+1 mod 6$ and $-1 mod 6$ are the accepted notations for what you mean by $6 mod +1$ and $6 mod -1$, respectively.
    – Code-Guru
    Jul 1 '17 at 19:23












  • @LordSharktheUnknown : That's not all he's saying; there's also a point about multiplication in modular arithmetic.
    – Michael Hardy
    Jul 1 '17 at 20:26






  • 2




    @Code-Guru : You can write $+1bmod6$ in MathJax without those huge horizontal spaces, by using bmod instead of mod. The "b" stands for "binary" and it means the spacing should be that which is used for binary operation symbols. That large space is for occasions like this: $$ (52 equiv 64) mod 6, $$ which means $52$ and $64$ both leave the same remainder when divided by $6. qquad$
    – Michael Hardy
    Jul 1 '17 at 20:28
















4














I am trying to figure out if the pattern I've found concerning twin primes is a known pattern or not. It turns out that with every set of twin primes, if the higher of the two numbers is converted to radix 7, and then the individual digits of the number are added together and continually added together until a 1 or 2 digit number is leftover, the number is always equal to 6 mod +1.



The lower of the two numbers is always 6 mod -1 with same calculation.



Examples:



Lower twin (radix 10)/ Lower twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>59 / 113 / 5 / 5</ul>
<ul>71 / 131 / 5 / 5</ul>
<ul>101 / 203 / 5 / 5</ul>
<ul>107 / 212 / 5 / 5</ul>
<ul>137 / 254 / 11 / 5</ul>
<ul>149 / 302 / 5 / 5</ul>
<ul>179 / 344 / 11 / 5</ul>
<ul>191 / 362 / 11 / 5</ul>
<ul>197 / 401 / 5 / 5</ul>
<ul>227 / 443 / 11 / 5</ul>
<ul>239 / 461 / 11 / 5</ul>
<ul>269 / 533 / 11 / 5</ul>
<ul>281 / 551 / 11 / 5</ul>
<ul>311 / 623 / 11 / 5</ul>
<ul>347 / 1004 / 5 / 5</ul>
<ul>419 / 1136 / 11 / 5</ul>
<ul>431 / 1154 / 11 / 5</ul>
<ul>461 / 1226 / 11 / 5</ul>
<ul>521 / 1343 / 11 / 5</ul>
<ul>569 / 1442 / 11 / 5</ul>
<ul>599 / 1514 / 11 / 5</ul>
<ul>617 / 1541 / 11 / 5</ul>
<ul>641 / 1604 / 11 / 5</ul>
<ul>659 / 1631 / 11 / 5</ul>
<ul>809 / 2234 / 11 / 5</ul>
<ul>821 / 2252 / 11 / 5</ul>
<ul>827 / 2261 / 11 / 5</ul>
<ul>857 / 2333 / 11 / 5</ul>
<ul>881 / 2366 / 17 / 5</ul>
<ul>1019 / 2654 / 17 / 5</ul>
<ul>1031 / 3002 / 5 / 5</ul>
<ul>1049 / 3026 / 11 / 5</ul>
<ul>1061 / 3044 / 11 / 5</ul>
<ul>1091 / 3116 / 11 / 5</ul>
<ul>1151 / 3233 / 11 / 5</ul>
<ul>1229 / 3404 / 11 / 5</ul>
<ul>1277 / 3503 / 11 / 5</ul>
<ul>1289 / 3521 / 11 / 5</ul>
<ul>1301 / 3536 / 17 / 5</ul>
<ul>1319 / 3563 / 17 / 5</ul>
<ul>1427 / 4106 / 11 / 5</ul>
<ul>1451 / 4142 / 11 / 5</ul>
<ul>1481 / 4214 / 11 / 5</ul>
<ul>1487 / 4223 / 11 / 5</ul>
<ul>1607 / 4454 / 17 / 5</ul>
<ul>1619 / 4502 / 11 / 5</ul>
<ul>963426767 / 32605664252 / 41 / 5</ul>
<ul>963427259 / 32605665554 / 47 / 5</ul>
<ul>963427301 / 32605665644 / 47 / 5</ul>
<ul>963427559 / 32605666463 / 47 / 5</ul>
<ul>963427919 / 32606000516 / 29 / 5</ul>
<ul>963428021 / 32606001023 / 23 / 5</ul>
<ul>963428099 / 32606001164 / 29 / 5</ul>
<ul>963428561 / 32606002424 / 29 / 5</ul>
<ul>963428861 / 32606003333 / 29 / 5</ul>
<ul>963428957 / 32606003531 / 29 / 5</ul>
<ul>963429167 / 32606004251 / 29 / 5</ul>
<ul>963430019 / 32606006606 / 35 / 5</ul>
<ul>963430079 / 32606010023 / 23 / 5</ul>
<ul>963430289 / 32606010443 / 29 / 5</ul>
<ul>963431177 / 32606013152 / 29 / 5</ul>
<ul>963431321 / 32606013446 / 35 / 5</ul>
<ul>963431477 / 32606014061 / 29 / 5</ul>
<ul>963431717 / 32606014553 / 35 / 5</ul>
<ul>963432131 / 32606016014 / 29 / 5</ul>
<ul>963432917 / 32606021216 / 29 / 5</ul>
<ul>963432989 / 32606021351 / 29 / 5</ul>
<ul>963433319 / 32606022332 / 29 / 5</ul>
<ul>963433439 / 32606022563 / 35 / 5</ul>
<ul>963433697 / 32606023412 / 29 / 5</ul>
<ul>963434411 / 32606025452 / 35 / 5</ul>
<ul>963434579 / 32606026112 / 29 / 5</ul>
<ul>963434609 / 32606026154 / 35 / 5</ul>
<ul>963434891 / 32606030036 / 29 / 5</ul>
<ul>963435227 / 32606031026 / 29 / 5</ul>
<ul>963435491 / 32606031554 / 35 / 5</ul>
<ul>963436037 / 32606033264 / 35 / 5</ul>
<ul>963436601 / 32606035031 / 29 / 5</ul>
<ul>963437261 / 32606036663 / 41 / 5</ul>
<ul>963437399 / 32606040251 / 29 / 5</ul>
<ul>963437927 / 32606041634 / 35 / 5</ul>
<ul>963437939 / 32606041652 / 35 / 5</ul>
<ul>963438017 / 32606042123 / 29 / 5</ul>
<ul>963438041 / 32606042156 / 35 / 5</ul>


Higher twin (radix 10)/ Higher twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>571 / 1444 / 13 / 1</ul>
<ul>601 / 1516 / 13 / 1</ul>
<ul>619 / 1543 / 13 / 1</ul>
<ul>643 / 1606 / 13 / 1</ul>
<ul>661 / 1633 / 13 / 1</ul>
<ul>811 / 2236 / 13 / 1</ul>
<ul>823 / 2254 / 13 / 1</ul>
<ul>829 / 2263 / 13 / 1</ul>
<ul>859 / 2335 / 13 / 1</ul>
<ul>883 / 2401 / 7 / 1</ul>
<ul>1021 / 2656 / 19 / 1</ul>
<ul>1033 / 3004 / 7 / 1</ul>
<ul>1051 / 3031 / 7 / 1</ul>
<ul>1063 / 3046 / 13 / 1</ul>
<ul>1093 / 3121 / 7 / 1</ul>
<ul>1153 / 3235 / 13 / 1</ul>
<ul>1231 / 3406 / 13 / 1</ul>
<ul>1279 / 3505 / 13 / 1</ul>
<ul>1291 / 3523 / 13 / 1</ul>
<ul>1303 / 3541 / 13 / 1</ul>
<ul>1321 / 3565 / 19 / 1</ul>
<ul>1429 / 4111 / 7 / 1</ul>
<ul>1453 / 4144 / 13 / 1</ul>
<ul>1483 / 4216 / 13 / 1</ul>
<ul>961750903 / 32555514331 / 37 / 1</ul>
<ul>961751209 / 32555515246 / 43 / 1</ul>
<ul>961752301 / 32555521366 / 43 / 1</ul>
<ul>961752349 / 32555521465 / 43 / 1</ul>
<ul>961752553 / 32555522206 / 37 / 1</ul>
<ul>961753789 / 32555525623 / 43 / 1</ul>
<ul>961753831 / 32555526013 / 37 / 1</ul>
<ul>961754011 / 32555526361 / 43 / 1</ul>
<ul>961754071 / 32555526505 / 43 / 1</ul>
<ul>961754461 / 32555530603 / 37 / 1</ul>
<ul>961755019 / 32555532331 / 37 / 1</ul>
<ul>961757059 / 32555541304 / 37 / 1</ul>
<ul>961757311 / 32555542114 / 37 / 1</ul>
<ul>961757431 / 32555542345 / 43 / 1</ul>
<ul>961757683 / 32555543155 / 43 / 1</ul>
<ul>961758673 / 32555546101 / 37 / 1</ul>
<ul>961759111 / 32555550265 / 43 / 1</ul>
<ul>961759483 / 32555551336 / 43 / 1</ul>
<ul>961759831 / 32555552344 / 43 / 1</ul>
<ul>961759861 / 32555552416 / 43 / 1</ul>
<ul>961760119 / 32555553235 / 43 / 1</ul>
<ul>961760719 / 32555555053 / 43 / 1</ul>
<ul>961761013 / 32555555653 / 49 / 1</ul>
<ul>961761139 / 32555556223 / 43 / 1</ul>
<ul>961761343 / 32555556634 / 49 / 1</ul>
<ul>961761403 / 32555560051 / 37 / 1</ul>
<ul>961761571 / 32555560411 / 37 / 1</ul>
<ul>961762033 / 32555561641 / 43 / 1</ul>
<ul>961762591 / 32555563366 / 49 / 1</ul>


I have other questions related to prime numbers but first want to see how valid or known this part is before I continue. I am not a mathematician.










share|cite|improve this question




















  • 5




    I think all you are saying here is that if $p$ and $p+2$ are primes then $pequiv-1pmod 6$. That is easy to prove (with the exception of $p=3$).
    – Lord Shark the Unknown
    Jul 1 '17 at 18:54










  • Thanks, I see now that it isn't very novel. In radix 6, all the lower twins would automatically have an ending digit of 5 and the higher twins an ending digit of 1.
    – Troy W
    Jul 1 '17 at 19:11










  • Note that $+1 mod 6$ and $-1 mod 6$ are the accepted notations for what you mean by $6 mod +1$ and $6 mod -1$, respectively.
    – Code-Guru
    Jul 1 '17 at 19:23












  • @LordSharktheUnknown : That's not all he's saying; there's also a point about multiplication in modular arithmetic.
    – Michael Hardy
    Jul 1 '17 at 20:26






  • 2




    @Code-Guru : You can write $+1bmod6$ in MathJax without those huge horizontal spaces, by using bmod instead of mod. The "b" stands for "binary" and it means the spacing should be that which is used for binary operation symbols. That large space is for occasions like this: $$ (52 equiv 64) mod 6, $$ which means $52$ and $64$ both leave the same remainder when divided by $6. qquad$
    – Michael Hardy
    Jul 1 '17 at 20:28














4












4








4


2





I am trying to figure out if the pattern I've found concerning twin primes is a known pattern or not. It turns out that with every set of twin primes, if the higher of the two numbers is converted to radix 7, and then the individual digits of the number are added together and continually added together until a 1 or 2 digit number is leftover, the number is always equal to 6 mod +1.



The lower of the two numbers is always 6 mod -1 with same calculation.



Examples:



Lower twin (radix 10)/ Lower twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>59 / 113 / 5 / 5</ul>
<ul>71 / 131 / 5 / 5</ul>
<ul>101 / 203 / 5 / 5</ul>
<ul>107 / 212 / 5 / 5</ul>
<ul>137 / 254 / 11 / 5</ul>
<ul>149 / 302 / 5 / 5</ul>
<ul>179 / 344 / 11 / 5</ul>
<ul>191 / 362 / 11 / 5</ul>
<ul>197 / 401 / 5 / 5</ul>
<ul>227 / 443 / 11 / 5</ul>
<ul>239 / 461 / 11 / 5</ul>
<ul>269 / 533 / 11 / 5</ul>
<ul>281 / 551 / 11 / 5</ul>
<ul>311 / 623 / 11 / 5</ul>
<ul>347 / 1004 / 5 / 5</ul>
<ul>419 / 1136 / 11 / 5</ul>
<ul>431 / 1154 / 11 / 5</ul>
<ul>461 / 1226 / 11 / 5</ul>
<ul>521 / 1343 / 11 / 5</ul>
<ul>569 / 1442 / 11 / 5</ul>
<ul>599 / 1514 / 11 / 5</ul>
<ul>617 / 1541 / 11 / 5</ul>
<ul>641 / 1604 / 11 / 5</ul>
<ul>659 / 1631 / 11 / 5</ul>
<ul>809 / 2234 / 11 / 5</ul>
<ul>821 / 2252 / 11 / 5</ul>
<ul>827 / 2261 / 11 / 5</ul>
<ul>857 / 2333 / 11 / 5</ul>
<ul>881 / 2366 / 17 / 5</ul>
<ul>1019 / 2654 / 17 / 5</ul>
<ul>1031 / 3002 / 5 / 5</ul>
<ul>1049 / 3026 / 11 / 5</ul>
<ul>1061 / 3044 / 11 / 5</ul>
<ul>1091 / 3116 / 11 / 5</ul>
<ul>1151 / 3233 / 11 / 5</ul>
<ul>1229 / 3404 / 11 / 5</ul>
<ul>1277 / 3503 / 11 / 5</ul>
<ul>1289 / 3521 / 11 / 5</ul>
<ul>1301 / 3536 / 17 / 5</ul>
<ul>1319 / 3563 / 17 / 5</ul>
<ul>1427 / 4106 / 11 / 5</ul>
<ul>1451 / 4142 / 11 / 5</ul>
<ul>1481 / 4214 / 11 / 5</ul>
<ul>1487 / 4223 / 11 / 5</ul>
<ul>1607 / 4454 / 17 / 5</ul>
<ul>1619 / 4502 / 11 / 5</ul>
<ul>963426767 / 32605664252 / 41 / 5</ul>
<ul>963427259 / 32605665554 / 47 / 5</ul>
<ul>963427301 / 32605665644 / 47 / 5</ul>
<ul>963427559 / 32605666463 / 47 / 5</ul>
<ul>963427919 / 32606000516 / 29 / 5</ul>
<ul>963428021 / 32606001023 / 23 / 5</ul>
<ul>963428099 / 32606001164 / 29 / 5</ul>
<ul>963428561 / 32606002424 / 29 / 5</ul>
<ul>963428861 / 32606003333 / 29 / 5</ul>
<ul>963428957 / 32606003531 / 29 / 5</ul>
<ul>963429167 / 32606004251 / 29 / 5</ul>
<ul>963430019 / 32606006606 / 35 / 5</ul>
<ul>963430079 / 32606010023 / 23 / 5</ul>
<ul>963430289 / 32606010443 / 29 / 5</ul>
<ul>963431177 / 32606013152 / 29 / 5</ul>
<ul>963431321 / 32606013446 / 35 / 5</ul>
<ul>963431477 / 32606014061 / 29 / 5</ul>
<ul>963431717 / 32606014553 / 35 / 5</ul>
<ul>963432131 / 32606016014 / 29 / 5</ul>
<ul>963432917 / 32606021216 / 29 / 5</ul>
<ul>963432989 / 32606021351 / 29 / 5</ul>
<ul>963433319 / 32606022332 / 29 / 5</ul>
<ul>963433439 / 32606022563 / 35 / 5</ul>
<ul>963433697 / 32606023412 / 29 / 5</ul>
<ul>963434411 / 32606025452 / 35 / 5</ul>
<ul>963434579 / 32606026112 / 29 / 5</ul>
<ul>963434609 / 32606026154 / 35 / 5</ul>
<ul>963434891 / 32606030036 / 29 / 5</ul>
<ul>963435227 / 32606031026 / 29 / 5</ul>
<ul>963435491 / 32606031554 / 35 / 5</ul>
<ul>963436037 / 32606033264 / 35 / 5</ul>
<ul>963436601 / 32606035031 / 29 / 5</ul>
<ul>963437261 / 32606036663 / 41 / 5</ul>
<ul>963437399 / 32606040251 / 29 / 5</ul>
<ul>963437927 / 32606041634 / 35 / 5</ul>
<ul>963437939 / 32606041652 / 35 / 5</ul>
<ul>963438017 / 32606042123 / 29 / 5</ul>
<ul>963438041 / 32606042156 / 35 / 5</ul>


Higher twin (radix 10)/ Higher twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>571 / 1444 / 13 / 1</ul>
<ul>601 / 1516 / 13 / 1</ul>
<ul>619 / 1543 / 13 / 1</ul>
<ul>643 / 1606 / 13 / 1</ul>
<ul>661 / 1633 / 13 / 1</ul>
<ul>811 / 2236 / 13 / 1</ul>
<ul>823 / 2254 / 13 / 1</ul>
<ul>829 / 2263 / 13 / 1</ul>
<ul>859 / 2335 / 13 / 1</ul>
<ul>883 / 2401 / 7 / 1</ul>
<ul>1021 / 2656 / 19 / 1</ul>
<ul>1033 / 3004 / 7 / 1</ul>
<ul>1051 / 3031 / 7 / 1</ul>
<ul>1063 / 3046 / 13 / 1</ul>
<ul>1093 / 3121 / 7 / 1</ul>
<ul>1153 / 3235 / 13 / 1</ul>
<ul>1231 / 3406 / 13 / 1</ul>
<ul>1279 / 3505 / 13 / 1</ul>
<ul>1291 / 3523 / 13 / 1</ul>
<ul>1303 / 3541 / 13 / 1</ul>
<ul>1321 / 3565 / 19 / 1</ul>
<ul>1429 / 4111 / 7 / 1</ul>
<ul>1453 / 4144 / 13 / 1</ul>
<ul>1483 / 4216 / 13 / 1</ul>
<ul>961750903 / 32555514331 / 37 / 1</ul>
<ul>961751209 / 32555515246 / 43 / 1</ul>
<ul>961752301 / 32555521366 / 43 / 1</ul>
<ul>961752349 / 32555521465 / 43 / 1</ul>
<ul>961752553 / 32555522206 / 37 / 1</ul>
<ul>961753789 / 32555525623 / 43 / 1</ul>
<ul>961753831 / 32555526013 / 37 / 1</ul>
<ul>961754011 / 32555526361 / 43 / 1</ul>
<ul>961754071 / 32555526505 / 43 / 1</ul>
<ul>961754461 / 32555530603 / 37 / 1</ul>
<ul>961755019 / 32555532331 / 37 / 1</ul>
<ul>961757059 / 32555541304 / 37 / 1</ul>
<ul>961757311 / 32555542114 / 37 / 1</ul>
<ul>961757431 / 32555542345 / 43 / 1</ul>
<ul>961757683 / 32555543155 / 43 / 1</ul>
<ul>961758673 / 32555546101 / 37 / 1</ul>
<ul>961759111 / 32555550265 / 43 / 1</ul>
<ul>961759483 / 32555551336 / 43 / 1</ul>
<ul>961759831 / 32555552344 / 43 / 1</ul>
<ul>961759861 / 32555552416 / 43 / 1</ul>
<ul>961760119 / 32555553235 / 43 / 1</ul>
<ul>961760719 / 32555555053 / 43 / 1</ul>
<ul>961761013 / 32555555653 / 49 / 1</ul>
<ul>961761139 / 32555556223 / 43 / 1</ul>
<ul>961761343 / 32555556634 / 49 / 1</ul>
<ul>961761403 / 32555560051 / 37 / 1</ul>
<ul>961761571 / 32555560411 / 37 / 1</ul>
<ul>961762033 / 32555561641 / 43 / 1</ul>
<ul>961762591 / 32555563366 / 49 / 1</ul>


I have other questions related to prime numbers but first want to see how valid or known this part is before I continue. I am not a mathematician.










share|cite|improve this question















I am trying to figure out if the pattern I've found concerning twin primes is a known pattern or not. It turns out that with every set of twin primes, if the higher of the two numbers is converted to radix 7, and then the individual digits of the number are added together and continually added together until a 1 or 2 digit number is leftover, the number is always equal to 6 mod +1.



The lower of the two numbers is always 6 mod -1 with same calculation.



Examples:



Lower twin (radix 10)/ Lower twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>59 / 113 / 5 / 5</ul>
<ul>71 / 131 / 5 / 5</ul>
<ul>101 / 203 / 5 / 5</ul>
<ul>107 / 212 / 5 / 5</ul>
<ul>137 / 254 / 11 / 5</ul>
<ul>149 / 302 / 5 / 5</ul>
<ul>179 / 344 / 11 / 5</ul>
<ul>191 / 362 / 11 / 5</ul>
<ul>197 / 401 / 5 / 5</ul>
<ul>227 / 443 / 11 / 5</ul>
<ul>239 / 461 / 11 / 5</ul>
<ul>269 / 533 / 11 / 5</ul>
<ul>281 / 551 / 11 / 5</ul>
<ul>311 / 623 / 11 / 5</ul>
<ul>347 / 1004 / 5 / 5</ul>
<ul>419 / 1136 / 11 / 5</ul>
<ul>431 / 1154 / 11 / 5</ul>
<ul>461 / 1226 / 11 / 5</ul>
<ul>521 / 1343 / 11 / 5</ul>
<ul>569 / 1442 / 11 / 5</ul>
<ul>599 / 1514 / 11 / 5</ul>
<ul>617 / 1541 / 11 / 5</ul>
<ul>641 / 1604 / 11 / 5</ul>
<ul>659 / 1631 / 11 / 5</ul>
<ul>809 / 2234 / 11 / 5</ul>
<ul>821 / 2252 / 11 / 5</ul>
<ul>827 / 2261 / 11 / 5</ul>
<ul>857 / 2333 / 11 / 5</ul>
<ul>881 / 2366 / 17 / 5</ul>
<ul>1019 / 2654 / 17 / 5</ul>
<ul>1031 / 3002 / 5 / 5</ul>
<ul>1049 / 3026 / 11 / 5</ul>
<ul>1061 / 3044 / 11 / 5</ul>
<ul>1091 / 3116 / 11 / 5</ul>
<ul>1151 / 3233 / 11 / 5</ul>
<ul>1229 / 3404 / 11 / 5</ul>
<ul>1277 / 3503 / 11 / 5</ul>
<ul>1289 / 3521 / 11 / 5</ul>
<ul>1301 / 3536 / 17 / 5</ul>
<ul>1319 / 3563 / 17 / 5</ul>
<ul>1427 / 4106 / 11 / 5</ul>
<ul>1451 / 4142 / 11 / 5</ul>
<ul>1481 / 4214 / 11 / 5</ul>
<ul>1487 / 4223 / 11 / 5</ul>
<ul>1607 / 4454 / 17 / 5</ul>
<ul>1619 / 4502 / 11 / 5</ul>
<ul>963426767 / 32605664252 / 41 / 5</ul>
<ul>963427259 / 32605665554 / 47 / 5</ul>
<ul>963427301 / 32605665644 / 47 / 5</ul>
<ul>963427559 / 32605666463 / 47 / 5</ul>
<ul>963427919 / 32606000516 / 29 / 5</ul>
<ul>963428021 / 32606001023 / 23 / 5</ul>
<ul>963428099 / 32606001164 / 29 / 5</ul>
<ul>963428561 / 32606002424 / 29 / 5</ul>
<ul>963428861 / 32606003333 / 29 / 5</ul>
<ul>963428957 / 32606003531 / 29 / 5</ul>
<ul>963429167 / 32606004251 / 29 / 5</ul>
<ul>963430019 / 32606006606 / 35 / 5</ul>
<ul>963430079 / 32606010023 / 23 / 5</ul>
<ul>963430289 / 32606010443 / 29 / 5</ul>
<ul>963431177 / 32606013152 / 29 / 5</ul>
<ul>963431321 / 32606013446 / 35 / 5</ul>
<ul>963431477 / 32606014061 / 29 / 5</ul>
<ul>963431717 / 32606014553 / 35 / 5</ul>
<ul>963432131 / 32606016014 / 29 / 5</ul>
<ul>963432917 / 32606021216 / 29 / 5</ul>
<ul>963432989 / 32606021351 / 29 / 5</ul>
<ul>963433319 / 32606022332 / 29 / 5</ul>
<ul>963433439 / 32606022563 / 35 / 5</ul>
<ul>963433697 / 32606023412 / 29 / 5</ul>
<ul>963434411 / 32606025452 / 35 / 5</ul>
<ul>963434579 / 32606026112 / 29 / 5</ul>
<ul>963434609 / 32606026154 / 35 / 5</ul>
<ul>963434891 / 32606030036 / 29 / 5</ul>
<ul>963435227 / 32606031026 / 29 / 5</ul>
<ul>963435491 / 32606031554 / 35 / 5</ul>
<ul>963436037 / 32606033264 / 35 / 5</ul>
<ul>963436601 / 32606035031 / 29 / 5</ul>
<ul>963437261 / 32606036663 / 41 / 5</ul>
<ul>963437399 / 32606040251 / 29 / 5</ul>
<ul>963437927 / 32606041634 / 35 / 5</ul>
<ul>963437939 / 32606041652 / 35 / 5</ul>
<ul>963438017 / 32606042123 / 29 / 5</ul>
<ul>963438041 / 32606042156 / 35 / 5</ul>


Higher twin (radix 10)/ Higher twin (radix 7)/ [sum of digits to 2 digits]/ MOD 6



<ul>571 / 1444 / 13 / 1</ul>
<ul>601 / 1516 / 13 / 1</ul>
<ul>619 / 1543 / 13 / 1</ul>
<ul>643 / 1606 / 13 / 1</ul>
<ul>661 / 1633 / 13 / 1</ul>
<ul>811 / 2236 / 13 / 1</ul>
<ul>823 / 2254 / 13 / 1</ul>
<ul>829 / 2263 / 13 / 1</ul>
<ul>859 / 2335 / 13 / 1</ul>
<ul>883 / 2401 / 7 / 1</ul>
<ul>1021 / 2656 / 19 / 1</ul>
<ul>1033 / 3004 / 7 / 1</ul>
<ul>1051 / 3031 / 7 / 1</ul>
<ul>1063 / 3046 / 13 / 1</ul>
<ul>1093 / 3121 / 7 / 1</ul>
<ul>1153 / 3235 / 13 / 1</ul>
<ul>1231 / 3406 / 13 / 1</ul>
<ul>1279 / 3505 / 13 / 1</ul>
<ul>1291 / 3523 / 13 / 1</ul>
<ul>1303 / 3541 / 13 / 1</ul>
<ul>1321 / 3565 / 19 / 1</ul>
<ul>1429 / 4111 / 7 / 1</ul>
<ul>1453 / 4144 / 13 / 1</ul>
<ul>1483 / 4216 / 13 / 1</ul>
<ul>961750903 / 32555514331 / 37 / 1</ul>
<ul>961751209 / 32555515246 / 43 / 1</ul>
<ul>961752301 / 32555521366 / 43 / 1</ul>
<ul>961752349 / 32555521465 / 43 / 1</ul>
<ul>961752553 / 32555522206 / 37 / 1</ul>
<ul>961753789 / 32555525623 / 43 / 1</ul>
<ul>961753831 / 32555526013 / 37 / 1</ul>
<ul>961754011 / 32555526361 / 43 / 1</ul>
<ul>961754071 / 32555526505 / 43 / 1</ul>
<ul>961754461 / 32555530603 / 37 / 1</ul>
<ul>961755019 / 32555532331 / 37 / 1</ul>
<ul>961757059 / 32555541304 / 37 / 1</ul>
<ul>961757311 / 32555542114 / 37 / 1</ul>
<ul>961757431 / 32555542345 / 43 / 1</ul>
<ul>961757683 / 32555543155 / 43 / 1</ul>
<ul>961758673 / 32555546101 / 37 / 1</ul>
<ul>961759111 / 32555550265 / 43 / 1</ul>
<ul>961759483 / 32555551336 / 43 / 1</ul>
<ul>961759831 / 32555552344 / 43 / 1</ul>
<ul>961759861 / 32555552416 / 43 / 1</ul>
<ul>961760119 / 32555553235 / 43 / 1</ul>
<ul>961760719 / 32555555053 / 43 / 1</ul>
<ul>961761013 / 32555555653 / 49 / 1</ul>
<ul>961761139 / 32555556223 / 43 / 1</ul>
<ul>961761343 / 32555556634 / 49 / 1</ul>
<ul>961761403 / 32555560051 / 37 / 1</ul>
<ul>961761571 / 32555560411 / 37 / 1</ul>
<ul>961762033 / 32555561641 / 43 / 1</ul>
<ul>961762591 / 32555563366 / 49 / 1</ul>


I have other questions related to prime numbers but first want to see how valid or known this part is before I continue. I am not a mathematician.







prime-numbers prime-twins






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Aloizio Macedo

23.4k23487




23.4k23487










asked Jul 1 '17 at 18:49









Troy W

474




474








  • 5




    I think all you are saying here is that if $p$ and $p+2$ are primes then $pequiv-1pmod 6$. That is easy to prove (with the exception of $p=3$).
    – Lord Shark the Unknown
    Jul 1 '17 at 18:54










  • Thanks, I see now that it isn't very novel. In radix 6, all the lower twins would automatically have an ending digit of 5 and the higher twins an ending digit of 1.
    – Troy W
    Jul 1 '17 at 19:11










  • Note that $+1 mod 6$ and $-1 mod 6$ are the accepted notations for what you mean by $6 mod +1$ and $6 mod -1$, respectively.
    – Code-Guru
    Jul 1 '17 at 19:23












  • @LordSharktheUnknown : That's not all he's saying; there's also a point about multiplication in modular arithmetic.
    – Michael Hardy
    Jul 1 '17 at 20:26






  • 2




    @Code-Guru : You can write $+1bmod6$ in MathJax without those huge horizontal spaces, by using bmod instead of mod. The "b" stands for "binary" and it means the spacing should be that which is used for binary operation symbols. That large space is for occasions like this: $$ (52 equiv 64) mod 6, $$ which means $52$ and $64$ both leave the same remainder when divided by $6. qquad$
    – Michael Hardy
    Jul 1 '17 at 20:28














  • 5




    I think all you are saying here is that if $p$ and $p+2$ are primes then $pequiv-1pmod 6$. That is easy to prove (with the exception of $p=3$).
    – Lord Shark the Unknown
    Jul 1 '17 at 18:54










  • Thanks, I see now that it isn't very novel. In radix 6, all the lower twins would automatically have an ending digit of 5 and the higher twins an ending digit of 1.
    – Troy W
    Jul 1 '17 at 19:11










  • Note that $+1 mod 6$ and $-1 mod 6$ are the accepted notations for what you mean by $6 mod +1$ and $6 mod -1$, respectively.
    – Code-Guru
    Jul 1 '17 at 19:23












  • @LordSharktheUnknown : That's not all he's saying; there's also a point about multiplication in modular arithmetic.
    – Michael Hardy
    Jul 1 '17 at 20:26






  • 2




    @Code-Guru : You can write $+1bmod6$ in MathJax without those huge horizontal spaces, by using bmod instead of mod. The "b" stands for "binary" and it means the spacing should be that which is used for binary operation symbols. That large space is for occasions like this: $$ (52 equiv 64) mod 6, $$ which means $52$ and $64$ both leave the same remainder when divided by $6. qquad$
    – Michael Hardy
    Jul 1 '17 at 20:28








5




5




I think all you are saying here is that if $p$ and $p+2$ are primes then $pequiv-1pmod 6$. That is easy to prove (with the exception of $p=3$).
– Lord Shark the Unknown
Jul 1 '17 at 18:54




I think all you are saying here is that if $p$ and $p+2$ are primes then $pequiv-1pmod 6$. That is easy to prove (with the exception of $p=3$).
– Lord Shark the Unknown
Jul 1 '17 at 18:54












Thanks, I see now that it isn't very novel. In radix 6, all the lower twins would automatically have an ending digit of 5 and the higher twins an ending digit of 1.
– Troy W
Jul 1 '17 at 19:11




Thanks, I see now that it isn't very novel. In radix 6, all the lower twins would automatically have an ending digit of 5 and the higher twins an ending digit of 1.
– Troy W
Jul 1 '17 at 19:11












Note that $+1 mod 6$ and $-1 mod 6$ are the accepted notations for what you mean by $6 mod +1$ and $6 mod -1$, respectively.
– Code-Guru
Jul 1 '17 at 19:23






Note that $+1 mod 6$ and $-1 mod 6$ are the accepted notations for what you mean by $6 mod +1$ and $6 mod -1$, respectively.
– Code-Guru
Jul 1 '17 at 19:23














@LordSharktheUnknown : That's not all he's saying; there's also a point about multiplication in modular arithmetic.
– Michael Hardy
Jul 1 '17 at 20:26




@LordSharktheUnknown : That's not all he's saying; there's also a point about multiplication in modular arithmetic.
– Michael Hardy
Jul 1 '17 at 20:26




2




2




@Code-Guru : You can write $+1bmod6$ in MathJax without those huge horizontal spaces, by using bmod instead of mod. The "b" stands for "binary" and it means the spacing should be that which is used for binary operation symbols. That large space is for occasions like this: $$ (52 equiv 64) mod 6, $$ which means $52$ and $64$ both leave the same remainder when divided by $6. qquad$
– Michael Hardy
Jul 1 '17 at 20:28




@Code-Guru : You can write $+1bmod6$ in MathJax without those huge horizontal spaces, by using bmod instead of mod. The "b" stands for "binary" and it means the spacing should be that which is used for binary operation symbols. That large space is for occasions like this: $$ (52 equiv 64) mod 6, $$ which means $52$ and $64$ both leave the same remainder when divided by $6. qquad$
– Michael Hardy
Jul 1 '17 at 20:28










1 Answer
1






active

oldest

votes


















3














begin{align}
d_0 + 7d_1 + 7^2 d_2 + 7^3 d_3 + cdots & equiv d_0 + 1d_1 + 1^2 d_2 + 1^3 d_3+cdots & &mod 6 \[10pt]
& equiv d_0 + d_1 + d_2 + d_3 + cdots & & mod 6
end{align}



What is at work here is something that says if $aequiv Abmod 6$ and $bequiv Bbmod 6$ then $abequiv ABbmod6$. Proving that takes a bit of elementary algebra. Applying it here we have $7equiv 1;$ therefore $7times7equiv 1times 1,$ etc.



The fact that twin primes are always of the form $6npm1,$ plus the facts above lead to the conclusion that the pattern you've identified will persist.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2343230%2fis-this-an-unknown-pattern-in-prime-numbers%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3














    begin{align}
    d_0 + 7d_1 + 7^2 d_2 + 7^3 d_3 + cdots & equiv d_0 + 1d_1 + 1^2 d_2 + 1^3 d_3+cdots & &mod 6 \[10pt]
    & equiv d_0 + d_1 + d_2 + d_3 + cdots & & mod 6
    end{align}



    What is at work here is something that says if $aequiv Abmod 6$ and $bequiv Bbmod 6$ then $abequiv ABbmod6$. Proving that takes a bit of elementary algebra. Applying it here we have $7equiv 1;$ therefore $7times7equiv 1times 1,$ etc.



    The fact that twin primes are always of the form $6npm1,$ plus the facts above lead to the conclusion that the pattern you've identified will persist.






    share|cite|improve this answer


























      3














      begin{align}
      d_0 + 7d_1 + 7^2 d_2 + 7^3 d_3 + cdots & equiv d_0 + 1d_1 + 1^2 d_2 + 1^3 d_3+cdots & &mod 6 \[10pt]
      & equiv d_0 + d_1 + d_2 + d_3 + cdots & & mod 6
      end{align}



      What is at work here is something that says if $aequiv Abmod 6$ and $bequiv Bbmod 6$ then $abequiv ABbmod6$. Proving that takes a bit of elementary algebra. Applying it here we have $7equiv 1;$ therefore $7times7equiv 1times 1,$ etc.



      The fact that twin primes are always of the form $6npm1,$ plus the facts above lead to the conclusion that the pattern you've identified will persist.






      share|cite|improve this answer
























        3












        3








        3






        begin{align}
        d_0 + 7d_1 + 7^2 d_2 + 7^3 d_3 + cdots & equiv d_0 + 1d_1 + 1^2 d_2 + 1^3 d_3+cdots & &mod 6 \[10pt]
        & equiv d_0 + d_1 + d_2 + d_3 + cdots & & mod 6
        end{align}



        What is at work here is something that says if $aequiv Abmod 6$ and $bequiv Bbmod 6$ then $abequiv ABbmod6$. Proving that takes a bit of elementary algebra. Applying it here we have $7equiv 1;$ therefore $7times7equiv 1times 1,$ etc.



        The fact that twin primes are always of the form $6npm1,$ plus the facts above lead to the conclusion that the pattern you've identified will persist.






        share|cite|improve this answer












        begin{align}
        d_0 + 7d_1 + 7^2 d_2 + 7^3 d_3 + cdots & equiv d_0 + 1d_1 + 1^2 d_2 + 1^3 d_3+cdots & &mod 6 \[10pt]
        & equiv d_0 + d_1 + d_2 + d_3 + cdots & & mod 6
        end{align}



        What is at work here is something that says if $aequiv Abmod 6$ and $bequiv Bbmod 6$ then $abequiv ABbmod6$. Proving that takes a bit of elementary algebra. Applying it here we have $7equiv 1;$ therefore $7times7equiv 1times 1,$ etc.



        The fact that twin primes are always of the form $6npm1,$ plus the facts above lead to the conclusion that the pattern you've identified will persist.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jul 1 '17 at 19:17









        Michael Hardy

        1




        1






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2343230%2fis-this-an-unknown-pattern-in-prime-numbers%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?