find the angle in a triangle with angles $ 20^{circ}, 70^circ, 90^circ $












0












$begingroup$


I have triangle geometry problem:



a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.



b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Try drawing them out and using the trigonometry formulae that you have been taught.
    $endgroup$
    – Bill Wallis
    May 4 '18 at 12:41






  • 1




    $begingroup$
    Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
    $endgroup$
    – Saeed_T
    May 4 '18 at 13:36










  • $begingroup$
    If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
    $endgroup$
    – Rosie F
    Jan 21 at 9:47
















0












$begingroup$


I have triangle geometry problem:



a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.



b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Try drawing them out and using the trigonometry formulae that you have been taught.
    $endgroup$
    – Bill Wallis
    May 4 '18 at 12:41






  • 1




    $begingroup$
    Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
    $endgroup$
    – Saeed_T
    May 4 '18 at 13:36










  • $begingroup$
    If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
    $endgroup$
    – Rosie F
    Jan 21 at 9:47














0












0








0


0



$begingroup$


I have triangle geometry problem:



a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.



b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.










share|cite|improve this question











$endgroup$




I have triangle geometry problem:



a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.



b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.







euclidean-geometry triangle angle






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 9:58









user549397

1,5081418




1,5081418










asked May 4 '18 at 6:40









Saeed_TSaeed_T

575




575












  • $begingroup$
    Try drawing them out and using the trigonometry formulae that you have been taught.
    $endgroup$
    – Bill Wallis
    May 4 '18 at 12:41






  • 1




    $begingroup$
    Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
    $endgroup$
    – Saeed_T
    May 4 '18 at 13:36










  • $begingroup$
    If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
    $endgroup$
    – Rosie F
    Jan 21 at 9:47


















  • $begingroup$
    Try drawing them out and using the trigonometry formulae that you have been taught.
    $endgroup$
    – Bill Wallis
    May 4 '18 at 12:41






  • 1




    $begingroup$
    Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
    $endgroup$
    – Saeed_T
    May 4 '18 at 13:36










  • $begingroup$
    If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
    $endgroup$
    – Rosie F
    Jan 21 at 9:47
















$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41




$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41




1




1




$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36




$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36












$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47




$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47










1 Answer
1






active

oldest

votes


















0












$begingroup$

Here is a solution to part (b).



enter image description hereLet $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.



Erect an equilateral $triangle BOJ$ on base $BO$.
$OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.



Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.



$OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.



Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.





Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2766062%2ffind-the-angle-in-a-triangle-with-angles-20-circ-70-circ-90-circ%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Here is a solution to part (b).



    enter image description hereLet $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.



    Erect an equilateral $triangle BOJ$ on base $BO$.
    $OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.



    Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.



    $OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.



    Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.





    Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Here is a solution to part (b).



      enter image description hereLet $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.



      Erect an equilateral $triangle BOJ$ on base $BO$.
      $OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.



      Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.



      $OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.



      Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.





      Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Here is a solution to part (b).



        enter image description hereLet $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.



        Erect an equilateral $triangle BOJ$ on base $BO$.
        $OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.



        Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.



        $OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.



        Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.





        Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.






        share|cite|improve this answer









        $endgroup$



        Here is a solution to part (b).



        enter image description hereLet $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.



        Erect an equilateral $triangle BOJ$ on base $BO$.
        $OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.



        Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.



        $OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.



        Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.





        Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 21 at 9:43









        Rosie FRosie F

        1,312315




        1,312315






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2766062%2ffind-the-angle-in-a-triangle-with-angles-20-circ-70-circ-90-circ%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?