Finding the function of these numbers $1, 2, 5, 13, 34, 89, 233, 610$












1












$begingroup$


Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Think Fibonacci.
    $endgroup$
    – André Nicolas
    Dec 5 '14 at 17:37










  • $begingroup$
    also, maybe under it chart out the partial sums
    $endgroup$
    – turkeyhundt
    Dec 5 '14 at 17:38










  • $begingroup$
    $f(n) = 3f(n-1) - f(n-2)$
    $endgroup$
    – peterwhy
    Dec 5 '14 at 17:39










  • $begingroup$
    It's Pisot sequences.
    $endgroup$
    – Tacet
    Dec 6 '14 at 0:29










  • $begingroup$
    The best way to find a sequence like this is to just put the first whatever terms into oeis.org
    $endgroup$
    – GFauxPas
    Dec 19 '14 at 19:15
















1












$begingroup$


Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Think Fibonacci.
    $endgroup$
    – André Nicolas
    Dec 5 '14 at 17:37










  • $begingroup$
    also, maybe under it chart out the partial sums
    $endgroup$
    – turkeyhundt
    Dec 5 '14 at 17:38










  • $begingroup$
    $f(n) = 3f(n-1) - f(n-2)$
    $endgroup$
    – peterwhy
    Dec 5 '14 at 17:39










  • $begingroup$
    It's Pisot sequences.
    $endgroup$
    – Tacet
    Dec 6 '14 at 0:29










  • $begingroup$
    The best way to find a sequence like this is to just put the first whatever terms into oeis.org
    $endgroup$
    – GFauxPas
    Dec 19 '14 at 19:15














1












1








1


3



$begingroup$


Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers










share|cite|improve this question









$endgroup$




Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 5 '14 at 17:35









E.H.EE.H.E

15.7k11966




15.7k11966








  • 1




    $begingroup$
    Think Fibonacci.
    $endgroup$
    – André Nicolas
    Dec 5 '14 at 17:37










  • $begingroup$
    also, maybe under it chart out the partial sums
    $endgroup$
    – turkeyhundt
    Dec 5 '14 at 17:38










  • $begingroup$
    $f(n) = 3f(n-1) - f(n-2)$
    $endgroup$
    – peterwhy
    Dec 5 '14 at 17:39










  • $begingroup$
    It's Pisot sequences.
    $endgroup$
    – Tacet
    Dec 6 '14 at 0:29










  • $begingroup$
    The best way to find a sequence like this is to just put the first whatever terms into oeis.org
    $endgroup$
    – GFauxPas
    Dec 19 '14 at 19:15














  • 1




    $begingroup$
    Think Fibonacci.
    $endgroup$
    – André Nicolas
    Dec 5 '14 at 17:37










  • $begingroup$
    also, maybe under it chart out the partial sums
    $endgroup$
    – turkeyhundt
    Dec 5 '14 at 17:38










  • $begingroup$
    $f(n) = 3f(n-1) - f(n-2)$
    $endgroup$
    – peterwhy
    Dec 5 '14 at 17:39










  • $begingroup$
    It's Pisot sequences.
    $endgroup$
    – Tacet
    Dec 6 '14 at 0:29










  • $begingroup$
    The best way to find a sequence like this is to just put the first whatever terms into oeis.org
    $endgroup$
    – GFauxPas
    Dec 19 '14 at 19:15








1




1




$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37




$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37












$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38




$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38












$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39




$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39












$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29




$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29












$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15




$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15










6 Answers
6






active

oldest

votes


















3












$begingroup$

Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Let $n_{1} = 1$. Then,



      $n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        1053253   



        ${{
        left({1+sqrt5}over2right)^n
        -left({1-sqrt5}over2right)^n
        }oversqrt5}$, where $n$ is of odd parity






        share|cite|improve this answer









        $endgroup$





















          0












          $begingroup$

          this is the positive numbers of the Fibonacci numbers in Z.
          What I mean:



          public class MySeedFibbo {
          public static void main(String args) {
          List<Integer> init = Arrays.asList(1, 1);
          Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
          negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
          }
          }


          Result if you run this code in Java SE 8 :



          0
          1
          -1
          2
          -3
          5
          -8
          13
          -21
          34
          -55
          89
          -144
          233
          -377
          610
          -987
          1597



          Modify the last line like this:



          negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});


          And we get only the positive numbers which form the sequence you're looking for.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
            But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
            begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
            &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
            &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
            implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
            end{align}$$



            If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1053253%2ffinding-the-function-of-these-numbers-1-2-5-13-34-89-233-610%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              6 Answers
              6






              active

              oldest

              votes








              6 Answers
              6






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.






                  share|cite|improve this answer









                  $endgroup$



                  Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 5 '14 at 18:58









                  Will JagyWill Jagy

                  102k5101199




                  102k5101199























                      1












                      $begingroup$

                      $a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        $a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          $a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$






                          share|cite|improve this answer









                          $endgroup$



                          $a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 5 '14 at 17:38







                          user155385






























                              0












                              $begingroup$

                              Let $n_{1} = 1$. Then,



                              $n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.






                              share|cite|improve this answer









                              $endgroup$


















                                0












                                $begingroup$

                                Let $n_{1} = 1$. Then,



                                $n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.






                                share|cite|improve this answer









                                $endgroup$
















                                  0












                                  0








                                  0





                                  $begingroup$

                                  Let $n_{1} = 1$. Then,



                                  $n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.






                                  share|cite|improve this answer









                                  $endgroup$



                                  Let $n_{1} = 1$. Then,



                                  $n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.







                                  share|cite|improve this answer












                                  share|cite|improve this answer



                                  share|cite|improve this answer










                                  answered Dec 5 '14 at 17:39









                                  Alex SilvaAlex Silva

                                  2,70531332




                                  2,70531332























                                      0












                                      $begingroup$

                                      1053253   



                                      ${{
                                      left({1+sqrt5}over2right)^n
                                      -left({1-sqrt5}over2right)^n
                                      }oversqrt5}$, where $n$ is of odd parity






                                      share|cite|improve this answer









                                      $endgroup$


















                                        0












                                        $begingroup$

                                        1053253   



                                        ${{
                                        left({1+sqrt5}over2right)^n
                                        -left({1-sqrt5}over2right)^n
                                        }oversqrt5}$, where $n$ is of odd parity






                                        share|cite|improve this answer









                                        $endgroup$
















                                          0












                                          0








                                          0





                                          $begingroup$

                                          1053253   



                                          ${{
                                          left({1+sqrt5}over2right)^n
                                          -left({1-sqrt5}over2right)^n
                                          }oversqrt5}$, where $n$ is of odd parity






                                          share|cite|improve this answer









                                          $endgroup$



                                          1053253   



                                          ${{
                                          left({1+sqrt5}over2right)^n
                                          -left({1-sqrt5}over2right)^n
                                          }oversqrt5}$, where $n$ is of odd parity







                                          share|cite|improve this answer












                                          share|cite|improve this answer



                                          share|cite|improve this answer










                                          answered Dec 6 '14 at 0:17









                                          Senex Ægypti ParviSenex Ægypti Parvi

                                          2,2031816




                                          2,2031816























                                              0












                                              $begingroup$

                                              this is the positive numbers of the Fibonacci numbers in Z.
                                              What I mean:



                                              public class MySeedFibbo {
                                              public static void main(String args) {
                                              List<Integer> init = Arrays.asList(1, 1);
                                              Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
                                              negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
                                              }
                                              }


                                              Result if you run this code in Java SE 8 :



                                              0
                                              1
                                              -1
                                              2
                                              -3
                                              5
                                              -8
                                              13
                                              -21
                                              34
                                              -55
                                              89
                                              -144
                                              233
                                              -377
                                              610
                                              -987
                                              1597



                                              Modify the last line like this:



                                              negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});


                                              And we get only the positive numbers which form the sequence you're looking for.






                                              share|cite|improve this answer











                                              $endgroup$


















                                                0












                                                $begingroup$

                                                this is the positive numbers of the Fibonacci numbers in Z.
                                                What I mean:



                                                public class MySeedFibbo {
                                                public static void main(String args) {
                                                List<Integer> init = Arrays.asList(1, 1);
                                                Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
                                                negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
                                                }
                                                }


                                                Result if you run this code in Java SE 8 :



                                                0
                                                1
                                                -1
                                                2
                                                -3
                                                5
                                                -8
                                                13
                                                -21
                                                34
                                                -55
                                                89
                                                -144
                                                233
                                                -377
                                                610
                                                -987
                                                1597



                                                Modify the last line like this:



                                                negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});


                                                And we get only the positive numbers which form the sequence you're looking for.






                                                share|cite|improve this answer











                                                $endgroup$
















                                                  0












                                                  0








                                                  0





                                                  $begingroup$

                                                  this is the positive numbers of the Fibonacci numbers in Z.
                                                  What I mean:



                                                  public class MySeedFibbo {
                                                  public static void main(String args) {
                                                  List<Integer> init = Arrays.asList(1, 1);
                                                  Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
                                                  negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
                                                  }
                                                  }


                                                  Result if you run this code in Java SE 8 :



                                                  0
                                                  1
                                                  -1
                                                  2
                                                  -3
                                                  5
                                                  -8
                                                  13
                                                  -21
                                                  34
                                                  -55
                                                  89
                                                  -144
                                                  233
                                                  -377
                                                  610
                                                  -987
                                                  1597



                                                  Modify the last line like this:



                                                  negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});


                                                  And we get only the positive numbers which form the sequence you're looking for.






                                                  share|cite|improve this answer











                                                  $endgroup$



                                                  this is the positive numbers of the Fibonacci numbers in Z.
                                                  What I mean:



                                                  public class MySeedFibbo {
                                                  public static void main(String args) {
                                                  List<Integer> init = Arrays.asList(1, 1);
                                                  Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
                                                  negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
                                                  }
                                                  }


                                                  Result if you run this code in Java SE 8 :



                                                  0
                                                  1
                                                  -1
                                                  2
                                                  -3
                                                  5
                                                  -8
                                                  13
                                                  -21
                                                  34
                                                  -55
                                                  89
                                                  -144
                                                  233
                                                  -377
                                                  610
                                                  -987
                                                  1597



                                                  Modify the last line like this:



                                                  negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});


                                                  And we get only the positive numbers which form the sequence you're looking for.







                                                  share|cite|improve this answer














                                                  share|cite|improve this answer



                                                  share|cite|improve this answer








                                                  edited Jan 9 at 1:42

























                                                  answered Jan 9 at 1:34









                                                  moldoveanmoldovean

                                                  1114




                                                  1114























                                                      0












                                                      $begingroup$

                                                      I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
                                                      But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
                                                      begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
                                                      &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
                                                      &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                      implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                      end{align}$$



                                                      If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.






                                                      share|cite|improve this answer









                                                      $endgroup$


















                                                        0












                                                        $begingroup$

                                                        I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
                                                        But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
                                                        begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
                                                        &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
                                                        &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                        implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                        end{align}$$



                                                        If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.






                                                        share|cite|improve this answer









                                                        $endgroup$
















                                                          0












                                                          0








                                                          0





                                                          $begingroup$

                                                          I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
                                                          But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
                                                          begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
                                                          &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
                                                          &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                          implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                          end{align}$$



                                                          If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.






                                                          share|cite|improve this answer









                                                          $endgroup$



                                                          I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
                                                          But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
                                                          begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
                                                          &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
                                                          &=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                          implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
                                                          end{align}$$



                                                          If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.







                                                          share|cite|improve this answer












                                                          share|cite|improve this answer



                                                          share|cite|improve this answer










                                                          answered Jan 9 at 8:28









                                                          alex.jordanalex.jordan

                                                          39k560120




                                                          39k560120






























                                                              draft saved

                                                              draft discarded




















































                                                              Thanks for contributing an answer to Mathematics Stack Exchange!


                                                              • Please be sure to answer the question. Provide details and share your research!

                                                              But avoid



                                                              • Asking for help, clarification, or responding to other answers.

                                                              • Making statements based on opinion; back them up with references or personal experience.


                                                              Use MathJax to format equations. MathJax reference.


                                                              To learn more, see our tips on writing great answers.




                                                              draft saved


                                                              draft discarded














                                                              StackExchange.ready(
                                                              function () {
                                                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1053253%2ffinding-the-function-of-these-numbers-1-2-5-13-34-89-233-610%23new-answer', 'question_page');
                                                              }
                                                              );

                                                              Post as a guest















                                                              Required, but never shown





















































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown

































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown







                                                              Popular posts from this blog

                                                              Mario Kart Wii

                                                              The Binding of Isaac: Rebirth/Afterbirth

                                                              What does “Dominus providebit” mean?