What is the limit of $ (1 - frac{1}{n})^{2n}$ as n goes to infinity?
$begingroup$
$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.
If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?
calculus
$endgroup$
add a comment |
$begingroup$
$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.
If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?
calculus
$endgroup$
2
$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54
2
$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54
1
$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55
add a comment |
$begingroup$
$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.
If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?
calculus
$endgroup$
$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.
If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?
calculus
calculus
asked Jan 7 at 15:51
Geoffrey CritzerGeoffrey Critzer
1,5121128
1,5121128
2
$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54
2
$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54
1
$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55
add a comment |
2
$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54
2
$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54
1
$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55
2
2
$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54
$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54
2
2
$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54
$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54
1
1
$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55
$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).
A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.
$endgroup$
add a comment |
$begingroup$
$lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$
Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065149%2fwhat-is-the-limit-of-1-frac1n2n-as-n-goes-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).
A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.
$endgroup$
add a comment |
$begingroup$
You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).
A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.
$endgroup$
add a comment |
$begingroup$
You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).
A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.
$endgroup$
You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).
A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.
answered Jan 7 at 15:55
MindlackMindlack
2,70717
2,70717
add a comment |
add a comment |
$begingroup$
$lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$
Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$
$endgroup$
add a comment |
$begingroup$
$lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$
Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$
$endgroup$
add a comment |
$begingroup$
$lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$
Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$
$endgroup$
$lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$
Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$
answered Jan 7 at 15:57
John_WickJohn_Wick
1,486111
1,486111
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065149%2fwhat-is-the-limit-of-1-frac1n2n-as-n-goes-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54
2
$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54
1
$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55