What is the limit of $ (1 - frac{1}{n})^{2n}$ as n goes to infinity?












0












$begingroup$


$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.



If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
    $endgroup$
    – Ethan Bolker
    Jan 7 at 15:54






  • 2




    $begingroup$
    $$((1-1/n)^n)^2 to (1/e)^2$$
    $endgroup$
    – Crostul
    Jan 7 at 15:54






  • 1




    $begingroup$
    write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
    $endgroup$
    – farruhota
    Jan 7 at 15:55
















0












$begingroup$


$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.



If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
    $endgroup$
    – Ethan Bolker
    Jan 7 at 15:54






  • 2




    $begingroup$
    $$((1-1/n)^n)^2 to (1/e)^2$$
    $endgroup$
    – Crostul
    Jan 7 at 15:54






  • 1




    $begingroup$
    write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
    $endgroup$
    – farruhota
    Jan 7 at 15:55














0












0








0





$begingroup$


$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.



If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?










share|cite|improve this question









$endgroup$




$ (1 - frac{1}{n})^{2n} = ((1-frac{1}{n})^2)^n = (1-frac{2}{n} + frac{1}{n^2})^n$.



If I ignore the $frac{1}{n^2}$ term inside the parenthesis I have that the limit is $e^{-2}$ which agrees with Mathematica. Can I ignore this term? Why?







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 7 at 15:51









Geoffrey CritzerGeoffrey Critzer

1,5121128




1,5121128








  • 2




    $begingroup$
    Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
    $endgroup$
    – Ethan Bolker
    Jan 7 at 15:54






  • 2




    $begingroup$
    $$((1-1/n)^n)^2 to (1/e)^2$$
    $endgroup$
    – Crostul
    Jan 7 at 15:54






  • 1




    $begingroup$
    write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
    $endgroup$
    – farruhota
    Jan 7 at 15:55














  • 2




    $begingroup$
    Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
    $endgroup$
    – Ethan Bolker
    Jan 7 at 15:54






  • 2




    $begingroup$
    $$((1-1/n)^n)^2 to (1/e)^2$$
    $endgroup$
    – Crostul
    Jan 7 at 15:54






  • 1




    $begingroup$
    write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
    $endgroup$
    – farruhota
    Jan 7 at 15:55








2




2




$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54




$begingroup$
Hint. It's cleaner if you use $(X^n)^2$ rather than $(X^2)^n$.
$endgroup$
– Ethan Bolker
Jan 7 at 15:54




2




2




$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54




$begingroup$
$$((1-1/n)^n)^2 to (1/e)^2$$
$endgroup$
– Crostul
Jan 7 at 15:54




1




1




$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55




$begingroup$
write it as $lim_limits{ntoinfty} [(1+frac1{-n})^{-n}]^{-2}=cdots$
$endgroup$
– farruhota
Jan 7 at 15:55










2 Answers
2






active

oldest

votes


















4












$begingroup$

You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).



A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    $lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$



    Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
    The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065149%2fwhat-is-the-limit-of-1-frac1n2n-as-n-goes-to-infinity%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).



      A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.






      share|cite|improve this answer









      $endgroup$


















        4












        $begingroup$

        You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).



        A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.






        share|cite|improve this answer









        $endgroup$
















          4












          4








          4





          $begingroup$

          You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).



          A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.






          share|cite|improve this answer









          $endgroup$



          You can ignore the term if you take a logarithm and expand $ln(1+x)$ as $x rightarrow 0$ (up to $O(x^2)$).



          A better reason here is that $left(1-frac{1}{n}right)^{2n}=left(left(1-frac{1}{n}right)^{n}right)^2 longrightarrow (e^{-1})^2=e^{-2}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 7 at 15:55









          MindlackMindlack

          2,70717




          2,70717























              2












              $begingroup$

              $lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$



              Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
              The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                $lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$



                Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
                The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  $lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$



                  Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
                  The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$






                  share|cite|improve this answer









                  $endgroup$



                  $lim left(1-frac2n+frac1{n^2}right)^n=lim left(1+frac1nleft(-2+frac1{n}right)right)^n=e^{lim left(-2+frac1{n}right)}=e^{-2}.$



                  Or you could just do $lim left(1-frac1nright)^{2n}=e^{2times (-1)}=e^-2.$
                  The rule here is $lim (1+a_n)^{b_n}=e^{lim (na_nb_n)}.$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 7 at 15:57









                  John_WickJohn_Wick

                  1,486111




                  1,486111






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065149%2fwhat-is-the-limit-of-1-frac1n2n-as-n-goes-to-infinity%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Mario Kart Wii

                      The Binding of Isaac: Rebirth/Afterbirth

                      What does “Dominus providebit” mean?