Proving reduction formula using integration by parts












0














I'm having difficulty proving this integral reduction formula by parts



If



$$I_n=intfrac{dx}{(a^2-x^2)^n}$$



, then



$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



I managed to do it using a trigonometric substitution:



$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$



Using the reduction formula



$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$



this integral becomes



$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$



Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:



$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$



So



$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



However I also wanted to prove this using integration by parts but I seem to be stuck:



$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$



Don't know how to proceed from here, any help?










share|cite|improve this question
























  • Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
    – lab bhattacharjee
    Dec 29 '18 at 17:49


















0














I'm having difficulty proving this integral reduction formula by parts



If



$$I_n=intfrac{dx}{(a^2-x^2)^n}$$



, then



$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



I managed to do it using a trigonometric substitution:



$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$



Using the reduction formula



$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$



this integral becomes



$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$



Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:



$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$



So



$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



However I also wanted to prove this using integration by parts but I seem to be stuck:



$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$



Don't know how to proceed from here, any help?










share|cite|improve this question
























  • Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
    – lab bhattacharjee
    Dec 29 '18 at 17:49
















0












0








0







I'm having difficulty proving this integral reduction formula by parts



If



$$I_n=intfrac{dx}{(a^2-x^2)^n}$$



, then



$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



I managed to do it using a trigonometric substitution:



$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$



Using the reduction formula



$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$



this integral becomes



$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$



Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:



$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$



So



$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



However I also wanted to prove this using integration by parts but I seem to be stuck:



$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$



Don't know how to proceed from here, any help?










share|cite|improve this question















I'm having difficulty proving this integral reduction formula by parts



If



$$I_n=intfrac{dx}{(a^2-x^2)^n}$$



, then



$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



I managed to do it using a trigonometric substitution:



$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$



Using the reduction formula



$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$



this integral becomes



$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$



Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:



$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$



So



$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$



However I also wanted to prove this using integration by parts but I seem to be stuck:



$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$



Don't know how to proceed from here, any help?







calculus integration reduction-formula






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 5 at 22:21







Anson Pang

















asked Dec 29 '18 at 17:32









Anson PangAnson Pang

624




624












  • Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
    – lab bhattacharjee
    Dec 29 '18 at 17:49




















  • Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
    – lab bhattacharjee
    Dec 29 '18 at 17:49


















Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
– lab bhattacharjee
Dec 29 '18 at 17:49






Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
– lab bhattacharjee
Dec 29 '18 at 17:49












2 Answers
2






active

oldest

votes


















1














$$I_n=intfrac{dx}{(ax^2+b)^n}$$
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
For your integral, set $a=-1$ and replace $b$ with $b^2$






share|cite|improve this answer





















  • But is it possible to do it through an independent IBP process, an not from a different reduction formula?
    – Anson Pang
    Jan 3 at 3:15










  • @AnsonPang yes, but the process would be exactly the same.
    – clathratus
    Jan 3 at 3:18










  • Oh, I see, thanks.
    – Anson Pang
    Jan 3 at 3:19



















0














Differentiation helps us to reduce calculation



$$dfrac{d{x(a^2-x^2)^n}}{dx}a$$



$$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$



$$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$



Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$



Set $n=-m$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056064%2fproving-reduction-formula-using-integration-by-parts%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    $$I_n=intfrac{dx}{(ax^2+b)^n}$$
    $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
    $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
    $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
    replacing $n+1$ with $n$,
    $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
    For your integral, set $a=-1$ and replace $b$ with $b^2$






    share|cite|improve this answer





















    • But is it possible to do it through an independent IBP process, an not from a different reduction formula?
      – Anson Pang
      Jan 3 at 3:15










    • @AnsonPang yes, but the process would be exactly the same.
      – clathratus
      Jan 3 at 3:18










    • Oh, I see, thanks.
      – Anson Pang
      Jan 3 at 3:19
















    1














    $$I_n=intfrac{dx}{(ax^2+b)^n}$$
    $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
    $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
    $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
    replacing $n+1$ with $n$,
    $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
    For your integral, set $a=-1$ and replace $b$ with $b^2$






    share|cite|improve this answer





















    • But is it possible to do it through an independent IBP process, an not from a different reduction formula?
      – Anson Pang
      Jan 3 at 3:15










    • @AnsonPang yes, but the process would be exactly the same.
      – clathratus
      Jan 3 at 3:18










    • Oh, I see, thanks.
      – Anson Pang
      Jan 3 at 3:19














    1












    1








    1






    $$I_n=intfrac{dx}{(ax^2+b)^n}$$
    $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
    $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
    $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
    replacing $n+1$ with $n$,
    $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
    For your integral, set $a=-1$ and replace $b$ with $b^2$






    share|cite|improve this answer












    $$I_n=intfrac{dx}{(ax^2+b)^n}$$
    $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
    $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
    $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
    $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
    replacing $n+1$ with $n$,
    $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
    For your integral, set $a=-1$ and replace $b$ with $b^2$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 30 '18 at 1:35









    clathratusclathratus

    3,325331




    3,325331












    • But is it possible to do it through an independent IBP process, an not from a different reduction formula?
      – Anson Pang
      Jan 3 at 3:15










    • @AnsonPang yes, but the process would be exactly the same.
      – clathratus
      Jan 3 at 3:18










    • Oh, I see, thanks.
      – Anson Pang
      Jan 3 at 3:19


















    • But is it possible to do it through an independent IBP process, an not from a different reduction formula?
      – Anson Pang
      Jan 3 at 3:15










    • @AnsonPang yes, but the process would be exactly the same.
      – clathratus
      Jan 3 at 3:18










    • Oh, I see, thanks.
      – Anson Pang
      Jan 3 at 3:19
















    But is it possible to do it through an independent IBP process, an not from a different reduction formula?
    – Anson Pang
    Jan 3 at 3:15




    But is it possible to do it through an independent IBP process, an not from a different reduction formula?
    – Anson Pang
    Jan 3 at 3:15












    @AnsonPang yes, but the process would be exactly the same.
    – clathratus
    Jan 3 at 3:18




    @AnsonPang yes, but the process would be exactly the same.
    – clathratus
    Jan 3 at 3:18












    Oh, I see, thanks.
    – Anson Pang
    Jan 3 at 3:19




    Oh, I see, thanks.
    – Anson Pang
    Jan 3 at 3:19











    0














    Differentiation helps us to reduce calculation



    $$dfrac{d{x(a^2-x^2)^n}}{dx}a$$



    $$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$



    $$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$



    Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$



    Set $n=-m$






    share|cite|improve this answer


























      0














      Differentiation helps us to reduce calculation



      $$dfrac{d{x(a^2-x^2)^n}}{dx}a$$



      $$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$



      $$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$



      Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$



      Set $n=-m$






      share|cite|improve this answer
























        0












        0








        0






        Differentiation helps us to reduce calculation



        $$dfrac{d{x(a^2-x^2)^n}}{dx}a$$



        $$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$



        $$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$



        Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$



        Set $n=-m$






        share|cite|improve this answer












        Differentiation helps us to reduce calculation



        $$dfrac{d{x(a^2-x^2)^n}}{dx}a$$



        $$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$



        $$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$



        Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$



        Set $n=-m$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 29 '18 at 17:46









        lab bhattacharjeelab bhattacharjee

        224k15156274




        224k15156274






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056064%2fproving-reduction-formula-using-integration-by-parts%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            What does “Dominus providebit” mean?

            Antonio Litta Visconti Arese