For cdf $F(x)$ ad empirical cdf $F_n(x)$, show that $|F^{-1}big(F_n(xi_p)big)-hatxi_p|overset{a.s}to0$
$begingroup$
Suppose $X_1,cdots,X_n$ are i.i.d. continuous random variables from distribution with cdf $F(x)$.Let $F_n(x)$
be a random variable defined by
$$F_n(x)=frac{1}nsum_{i=1}^nI{X_ile x}.$$
Define the $p$th quantile for cdf $F(x)$ as
$$xi_pequiv F^{-1}(p)=inf{x:F(x)ge p},$$
and the $p$th quantile for empirical cdf $F_n(x)$ as
$$hatxi_pequiv F_n^{-1}(p)=inf{x:F_n(x)ge p}.$$
Show that
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|overset{a.s}to0$$
How can we prove the result? By LLN, we have $F_n(x)overset{a.s}to F(x)$. Can we write the equation as
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|=Big|F^{-1}big(F_n(xi_p)big)-F_n^{-1}big(F(xi_p)big)Big|,$$
and get the result directly?
probability probability-theory probability-distributions quantile
$endgroup$
add a comment |
$begingroup$
Suppose $X_1,cdots,X_n$ are i.i.d. continuous random variables from distribution with cdf $F(x)$.Let $F_n(x)$
be a random variable defined by
$$F_n(x)=frac{1}nsum_{i=1}^nI{X_ile x}.$$
Define the $p$th quantile for cdf $F(x)$ as
$$xi_pequiv F^{-1}(p)=inf{x:F(x)ge p},$$
and the $p$th quantile for empirical cdf $F_n(x)$ as
$$hatxi_pequiv F_n^{-1}(p)=inf{x:F_n(x)ge p}.$$
Show that
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|overset{a.s}to0$$
How can we prove the result? By LLN, we have $F_n(x)overset{a.s}to F(x)$. Can we write the equation as
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|=Big|F^{-1}big(F_n(xi_p)big)-F_n^{-1}big(F(xi_p)big)Big|,$$
and get the result directly?
probability probability-theory probability-distributions quantile
$endgroup$
1
$begingroup$
For a fixed $x$, $F_n(x) = frac1n sum_{k=1}^n 1_{X_k le x}$ is a random variable with binomial distribution $Pr(F_n(x) le l/n)= sum_{m=0}^{lfloor l rfloor} {n choose m} F(x)^m (1-F(x))^m$. So $mathbb{E}[F_n(x)]= F(x)$ and $mathbb{E}[(F_n(x)-F(x))^2]= frac1n F(x)(1-F(x))to 0$. Whence $F_n(x) to F(x)$ almost surely and since $F^{-1}$ is continuous then $F^{-1}(F_n(x)) to F^{-1}(F(x))$ a.s.
$endgroup$
– reuns
Dec 29 '18 at 7:38
1
$begingroup$
@reuns The continuity of $F(x)$ does not make $F^{-1}$ continuous. Consider uniform distribution on the union of intervals $(0,1)$ and $(2,3)$ and you will get $F^{-1}(0.5)=1$, $F^{-1}(0.5+)=2$ (right limit).
$endgroup$
– NCh
Dec 29 '18 at 15:15
$begingroup$
Not so easy. If $F^{-1}$ is discontinuous only at finitely many point it is easier.
$endgroup$
– reuns
Jan 8 at 11:27
$begingroup$
@reuns Thank you for your kind comments!
$endgroup$
– J.Mike
Jan 8 at 17:59
add a comment |
$begingroup$
Suppose $X_1,cdots,X_n$ are i.i.d. continuous random variables from distribution with cdf $F(x)$.Let $F_n(x)$
be a random variable defined by
$$F_n(x)=frac{1}nsum_{i=1}^nI{X_ile x}.$$
Define the $p$th quantile for cdf $F(x)$ as
$$xi_pequiv F^{-1}(p)=inf{x:F(x)ge p},$$
and the $p$th quantile for empirical cdf $F_n(x)$ as
$$hatxi_pequiv F_n^{-1}(p)=inf{x:F_n(x)ge p}.$$
Show that
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|overset{a.s}to0$$
How can we prove the result? By LLN, we have $F_n(x)overset{a.s}to F(x)$. Can we write the equation as
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|=Big|F^{-1}big(F_n(xi_p)big)-F_n^{-1}big(F(xi_p)big)Big|,$$
and get the result directly?
probability probability-theory probability-distributions quantile
$endgroup$
Suppose $X_1,cdots,X_n$ are i.i.d. continuous random variables from distribution with cdf $F(x)$.Let $F_n(x)$
be a random variable defined by
$$F_n(x)=frac{1}nsum_{i=1}^nI{X_ile x}.$$
Define the $p$th quantile for cdf $F(x)$ as
$$xi_pequiv F^{-1}(p)=inf{x:F(x)ge p},$$
and the $p$th quantile for empirical cdf $F_n(x)$ as
$$hatxi_pequiv F_n^{-1}(p)=inf{x:F_n(x)ge p}.$$
Show that
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|overset{a.s}to0$$
How can we prove the result? By LLN, we have $F_n(x)overset{a.s}to F(x)$. Can we write the equation as
$$Big|F^{-1}big(F_n(xi_p)big)-hatxi_pBig|=Big|F^{-1}big(F_n(xi_p)big)-F_n^{-1}big(F(xi_p)big)Big|,$$
and get the result directly?
probability probability-theory probability-distributions quantile
probability probability-theory probability-distributions quantile
edited Jan 8 at 10:00
TZakrevskiy
20.1k12354
20.1k12354
asked Dec 29 '18 at 6:36
J.MikeJ.Mike
336110
336110
1
$begingroup$
For a fixed $x$, $F_n(x) = frac1n sum_{k=1}^n 1_{X_k le x}$ is a random variable with binomial distribution $Pr(F_n(x) le l/n)= sum_{m=0}^{lfloor l rfloor} {n choose m} F(x)^m (1-F(x))^m$. So $mathbb{E}[F_n(x)]= F(x)$ and $mathbb{E}[(F_n(x)-F(x))^2]= frac1n F(x)(1-F(x))to 0$. Whence $F_n(x) to F(x)$ almost surely and since $F^{-1}$ is continuous then $F^{-1}(F_n(x)) to F^{-1}(F(x))$ a.s.
$endgroup$
– reuns
Dec 29 '18 at 7:38
1
$begingroup$
@reuns The continuity of $F(x)$ does not make $F^{-1}$ continuous. Consider uniform distribution on the union of intervals $(0,1)$ and $(2,3)$ and you will get $F^{-1}(0.5)=1$, $F^{-1}(0.5+)=2$ (right limit).
$endgroup$
– NCh
Dec 29 '18 at 15:15
$begingroup$
Not so easy. If $F^{-1}$ is discontinuous only at finitely many point it is easier.
$endgroup$
– reuns
Jan 8 at 11:27
$begingroup$
@reuns Thank you for your kind comments!
$endgroup$
– J.Mike
Jan 8 at 17:59
add a comment |
1
$begingroup$
For a fixed $x$, $F_n(x) = frac1n sum_{k=1}^n 1_{X_k le x}$ is a random variable with binomial distribution $Pr(F_n(x) le l/n)= sum_{m=0}^{lfloor l rfloor} {n choose m} F(x)^m (1-F(x))^m$. So $mathbb{E}[F_n(x)]= F(x)$ and $mathbb{E}[(F_n(x)-F(x))^2]= frac1n F(x)(1-F(x))to 0$. Whence $F_n(x) to F(x)$ almost surely and since $F^{-1}$ is continuous then $F^{-1}(F_n(x)) to F^{-1}(F(x))$ a.s.
$endgroup$
– reuns
Dec 29 '18 at 7:38
1
$begingroup$
@reuns The continuity of $F(x)$ does not make $F^{-1}$ continuous. Consider uniform distribution on the union of intervals $(0,1)$ and $(2,3)$ and you will get $F^{-1}(0.5)=1$, $F^{-1}(0.5+)=2$ (right limit).
$endgroup$
– NCh
Dec 29 '18 at 15:15
$begingroup$
Not so easy. If $F^{-1}$ is discontinuous only at finitely many point it is easier.
$endgroup$
– reuns
Jan 8 at 11:27
$begingroup$
@reuns Thank you for your kind comments!
$endgroup$
– J.Mike
Jan 8 at 17:59
1
1
$begingroup$
For a fixed $x$, $F_n(x) = frac1n sum_{k=1}^n 1_{X_k le x}$ is a random variable with binomial distribution $Pr(F_n(x) le l/n)= sum_{m=0}^{lfloor l rfloor} {n choose m} F(x)^m (1-F(x))^m$. So $mathbb{E}[F_n(x)]= F(x)$ and $mathbb{E}[(F_n(x)-F(x))^2]= frac1n F(x)(1-F(x))to 0$. Whence $F_n(x) to F(x)$ almost surely and since $F^{-1}$ is continuous then $F^{-1}(F_n(x)) to F^{-1}(F(x))$ a.s.
$endgroup$
– reuns
Dec 29 '18 at 7:38
$begingroup$
For a fixed $x$, $F_n(x) = frac1n sum_{k=1}^n 1_{X_k le x}$ is a random variable with binomial distribution $Pr(F_n(x) le l/n)= sum_{m=0}^{lfloor l rfloor} {n choose m} F(x)^m (1-F(x))^m$. So $mathbb{E}[F_n(x)]= F(x)$ and $mathbb{E}[(F_n(x)-F(x))^2]= frac1n F(x)(1-F(x))to 0$. Whence $F_n(x) to F(x)$ almost surely and since $F^{-1}$ is continuous then $F^{-1}(F_n(x)) to F^{-1}(F(x))$ a.s.
$endgroup$
– reuns
Dec 29 '18 at 7:38
1
1
$begingroup$
@reuns The continuity of $F(x)$ does not make $F^{-1}$ continuous. Consider uniform distribution on the union of intervals $(0,1)$ and $(2,3)$ and you will get $F^{-1}(0.5)=1$, $F^{-1}(0.5+)=2$ (right limit).
$endgroup$
– NCh
Dec 29 '18 at 15:15
$begingroup$
@reuns The continuity of $F(x)$ does not make $F^{-1}$ continuous. Consider uniform distribution on the union of intervals $(0,1)$ and $(2,3)$ and you will get $F^{-1}(0.5)=1$, $F^{-1}(0.5+)=2$ (right limit).
$endgroup$
– NCh
Dec 29 '18 at 15:15
$begingroup$
Not so easy. If $F^{-1}$ is discontinuous only at finitely many point it is easier.
$endgroup$
– reuns
Jan 8 at 11:27
$begingroup$
Not so easy. If $F^{-1}$ is discontinuous only at finitely many point it is easier.
$endgroup$
– reuns
Jan 8 at 11:27
$begingroup$
@reuns Thank you for your kind comments!
$endgroup$
– J.Mike
Jan 8 at 17:59
$begingroup$
@reuns Thank you for your kind comments!
$endgroup$
– J.Mike
Jan 8 at 17:59
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055596%2ffor-cdf-fx-ad-empirical-cdf-f-nx-show-that-f-1-bigf-n-xi-p-big%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055596%2ffor-cdf-fx-ad-empirical-cdf-f-nx-show-that-f-1-bigf-n-xi-p-big%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For a fixed $x$, $F_n(x) = frac1n sum_{k=1}^n 1_{X_k le x}$ is a random variable with binomial distribution $Pr(F_n(x) le l/n)= sum_{m=0}^{lfloor l rfloor} {n choose m} F(x)^m (1-F(x))^m$. So $mathbb{E}[F_n(x)]= F(x)$ and $mathbb{E}[(F_n(x)-F(x))^2]= frac1n F(x)(1-F(x))to 0$. Whence $F_n(x) to F(x)$ almost surely and since $F^{-1}$ is continuous then $F^{-1}(F_n(x)) to F^{-1}(F(x))$ a.s.
$endgroup$
– reuns
Dec 29 '18 at 7:38
1
$begingroup$
@reuns The continuity of $F(x)$ does not make $F^{-1}$ continuous. Consider uniform distribution on the union of intervals $(0,1)$ and $(2,3)$ and you will get $F^{-1}(0.5)=1$, $F^{-1}(0.5+)=2$ (right limit).
$endgroup$
– NCh
Dec 29 '18 at 15:15
$begingroup$
Not so easy. If $F^{-1}$ is discontinuous only at finitely many point it is easier.
$endgroup$
– reuns
Jan 8 at 11:27
$begingroup$
@reuns Thank you for your kind comments!
$endgroup$
– J.Mike
Jan 8 at 17:59